Statistics of linear polymer chains in the self-avoiding walks model

A strict statistics of self avoiding random walks in d-dimensional discrete (lattice) and continuous space is proposed. Asymptotic analytical expressions for the distribution and distribution density of corresponding random values characterizing a conformational state of polymer chain have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2001
1. Verfasser: Medvedevskikh, Yu.G.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2001
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/120427
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Statistics of linear polymer chains in the self-avoiding walks model / Yu.G. Medvedevskikh // Condensed Matter Physics. — 2001. — Т. 4, № 2(26). — С. 209-218. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-120427
record_format dspace
spelling irk-123456789-1204272017-06-13T03:04:45Z Statistics of linear polymer chains in the self-avoiding walks model Medvedevskikh, Yu.G. A strict statistics of self avoiding random walks in d-dimensional discrete (lattice) and continuous space is proposed. Asymptotic analytical expressions for the distribution and distribution density of corresponding random values characterizing a conformational state of polymer chain have been obtained and their quantitative estimation has been given. It is shown that conformation of polymer chain possesses a structure of spherical or, more commonly, of elliptical shell diffusely blurred both outside and inside the polymer coil, which nucleus is statistically void and has a radius of about half of Flory radius. Statistics of self-avoiding walks describes completely an effect of excluded volume and meets the terms of Flory method in Pietronero’s concepti. Запропонована точна статистика випадкових блукань із самоуниканням полімерного ланцюга у d-вимірному дискретному (гратка) і в неперервному просторах. Одержані асимтотичні аналітичні вирази для розподілу і густини розподілу відповідних випадкових величин, що характеризують конформаційний стан полімерного ланцюга, дана їх кількісна оцінка. Показано, що конформація полімерного ланцюга має структуру сферичної або, у більш загальному випадку, еліпсоїдної оболонки, що дифузно розмита як назовні, так і всередину полімерного клубка, ядро якого з радіусом порядка половини радіуса Флорі статистично пусте. Статистика випадкових блукань без перетинів повністю описує ефект вилученого об’єму і збігається з результатами методу Флорі у концепції П’єтронеро. 2001 Article Statistics of linear polymer chains in the self-avoiding walks model / Yu.G. Medvedevskikh // Condensed Matter Physics. — 2001. — Т. 4, № 2(26). — С. 209-218. — Бібліогр.: 10 назв. — англ. 1607-324X PACS: 05.40.Fb DOI:10.5488/CMP.4.2.209 http://dspace.nbuv.gov.ua/handle/123456789/120427 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A strict statistics of self avoiding random walks in d-dimensional discrete (lattice) and continuous space is proposed. Asymptotic analytical expressions for the distribution and distribution density of corresponding random values characterizing a conformational state of polymer chain have been obtained and their quantitative estimation has been given. It is shown that conformation of polymer chain possesses a structure of spherical or, more commonly, of elliptical shell diffusely blurred both outside and inside the polymer coil, which nucleus is statistically void and has a radius of about half of Flory radius. Statistics of self-avoiding walks describes completely an effect of excluded volume and meets the terms of Flory method in Pietronero’s concepti.
format Article
author Medvedevskikh, Yu.G.
spellingShingle Medvedevskikh, Yu.G.
Statistics of linear polymer chains in the self-avoiding walks model
Condensed Matter Physics
author_facet Medvedevskikh, Yu.G.
author_sort Medvedevskikh, Yu.G.
title Statistics of linear polymer chains in the self-avoiding walks model
title_short Statistics of linear polymer chains in the self-avoiding walks model
title_full Statistics of linear polymer chains in the self-avoiding walks model
title_fullStr Statistics of linear polymer chains in the self-avoiding walks model
title_full_unstemmed Statistics of linear polymer chains in the self-avoiding walks model
title_sort statistics of linear polymer chains in the self-avoiding walks model
publisher Інститут фізики конденсованих систем НАН України
publishDate 2001
url http://dspace.nbuv.gov.ua/handle/123456789/120427
citation_txt Statistics of linear polymer chains in the self-avoiding walks model / Yu.G. Medvedevskikh // Condensed Matter Physics. — 2001. — Т. 4, № 2(26). — С. 209-218. — Бібліогр.: 10 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT medvedevskikhyug statisticsoflinearpolymerchainsintheselfavoidingwalksmodel
first_indexed 2025-07-08T17:51:55Z
last_indexed 2025-07-08T17:51:55Z
_version_ 1837102129738678272
fulltext Condensed Matter Physics, 2001, Vol. 4, No. 2(26), pp. 209–218 Statistics of linear polymer chains in the self-avoiding walks model Yu.G.Medvedevskikh The Department of the L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, 3a Naukova Str., 79053 Lviv, Ukraine Received December 20, 2000 A strict statistics of self avoiding random walks in d-dimensional discrete (lattice) and continuous space is proposed. Asymptotic analytical expres- sions for the distribution and distribution density of corresponding random values characterizing a conformational state of polymer chain have been obtained and their quantitative estimation has been given. It is shown that conformation of polymer chain possesses a structure of spherical or, more commonly, of elliptical shell diffusely blurred both outside and inside the polymer coil, which nucleus is statistically void and has a radius of about half of Flory radius. Statistics of self-avoiding walks describes complete- ly an effect of excluded volume and meets the terms of Flory method in Pietronero’s concepti. Key words: Flory method, statistics, self-intersection, polymer chain, random walks, lattice, fatigue function, conformation PACS: 05.40.Fb 1. Flory method and Pietronero’s concepti One of the peculiarities of long flexible polymer chains is that their thermody- namic and dynamic properties in solution are to a great extent determined not by the nature of links but by their quantity, i.e. by conformation of macromolecules. The basis of its description is a model of free-joined Kuhn’s chain and statistics of random walks (RW) of its growing end [1]. In terms of those statistics, the dis- tance distribution between the chain ends is described by Gaussian function having two features: distribution mode corresponds to zero distance between chain ends, and root-mean-square radius R0 of polymer coil and chain length N correlate as R0 ∼ Nν , where ν = 1/2. Experimental data show the values close to 3/5. Taking into account the effects of short range ordering, e.g. of fixed valent angles and hinderance of internal rotation [2,3], do not change the shape of distribution function and the correlation R0 ∼ N1/2 but increase R0 that can be interpreted in terms of the increase of a statistical length of equivalent Kuhn’s chain segment [4]. c© Yu.G.Medvedevskikh 209 Yu.G.Medvedevskikh It was several times noticed [2,3] that soft polymer chain configuration differs in one important relation from RW trajectory: it must not intersect. This limitation known as long range ordering effect or excluded volume effect demands new statis- tics, i.e., statistics of self-avoiding walks (SAW). The attempts made (see [2]) have not permitted to solve this problem completely. That is why the authors of references [5,6] find the success of Flory method (after de Gennes [7]) to be especially unexpected. In this method, the free energy F of polymer chain conformation in kT units is presented by a sum F = vN2/Rd + dR2/2a2N, (1) where v = ad(1 − 2χ) is an excluded or an effective volume of monomer link, a is its statistical length, χ is a Flory-Huggins parameter, R is a distance between chain ends and d is the Euclidean space dimension. The augend in (1) represents a pairwise repulsion energy of chain links in the self- consistent field approximation, and the addend represents the polymer chain elastic energy determined via entropy (F = −TS) of its conformation in RW statistics. Minimization of F by R permits to find the equilibrium or the most probable radius Rf of Flory coil: Rf = afN ν , (2) ν = 3 (d+ 2) , (3) where af = a(1− 2χ)1/(d+2). Formula (3) appears to be universal: it is in good accordance with the results of physical experiment and computer simulation of SAWs on a lattice [5–8]. Flory conception put in expression (1) cannot give a strict explanation for those results. That is why, Pietronero [5] has proposed another concepti of Flory method, in accordance with which, both components of expression (1) possess an entropic nature but the conformation entropy is determined by SAW statistics. Pietronero’s concepti makes explainable a good correlation of Flory method for- mula (3) with the results of SAW computer simulation on the lattice and gives a heuristic landmark for the construction of strict SAW statistics. 2. Statistics of SAWs on a d -dimensional lattice Let us incorporate the numbers ni of chain end steps along the i direction of d-dimensional lattice with cell size equal to statistical length of chain link. Besides: ∑ i ni = N, i = 1, d. (4) The quantity of realization variants of random steps along the i direction is equal to ni!/n + i !n − i !, where the numbers of steps in positive n+ i and negative n− i directions of wandering are correlated by n+ i + n− i = ni. Considering that the probability of 210 Statistics of linear polymer chains in the SAW model wandering positive or negative direction choice is assumed to be the same and equal to 1/2, the probability ω(ni) that at given ni, n + i positive and n− i negative steps will be made is determined by Bernoulli distribution: ω(ni) = ( 1 2 )ni ni!/n + i !n − i ! . (5) Then, incorporating the quantity of effective steps si = n+ i −n− i along i direction of wandering, we obtain n+ i = (ni + si)/2, n − i = (ni − si)/2. Then (5) can look like the following: ω(ni) = ( 1 2 )ni ni!/((ni + si)/2)!((ni − si)/2)! . (6) For d-dimensional wandering we have ω(n) = ( 1 2 )N ∏ i ni!/((ni + si)/2)!((ni − si)/2)! . (7) One can see that change of sign at si does not change the value ω(n). That is why ω(n) represents the probability that the trajectory of random wandering after ni steps along i directions will be finished in one of 2d cells Mp(s), which coordinates are determined by vectors s = (si), i = 1, d having a distinction in signs of their components si only. These cells or states of chain end are equiprobable. The condition of self-avoidance of a RW trajectory on d-dimensional lattice de- mands the step not to fall twice in the same cell. From the point of view of chain link distribution over cells it means that every cell cannot contain more than one chain link. Chain links are inseparable. They cannot be torn off one from another and placed to cells in random order. Consequently, the numbering of chain links corresponding to wandering steps is their significant distinction. That is why, the quantity of different variants of N distinctive chain links placement in Z identical cells under the condition that one cell cannot contain more than one chain link is equal to Z!/(Z −N)! . Considering the identity of cells, a priori probability that the given cell will be filled is equal to 1/Z, and that it will not be filled is (1 − 1/Z). Respectively, the probability ω(z) that N given cells will be filled and Z − N cells will be empty, considering both the above mentioned condition of placement of N distinctive links in Z identical cells and the quantity of its realization variants, will be determined by the following expression ω(z) = Z!(1/Z)N(1− 1/Z)Z−N/(Z −N)! . (8) Probability ω(s) of simultaneous event, meaning that the RW trajectory is also the SAW trajectory and, at given Z, N and ni, it will fall with its last step into one of 2d equiprobable cells Mp(s), will be equal to ω(s) = ω(z)ω(n). (9) 211 Yu.G.Medvedevskikh Let us find the asymptotic (9), assuming Z ≫ 1, N ≫ 1, ni ≫ 1 under the condition si ≪ ni, N ≪ Z. Using the approximated Stirling formula lnx! ≈ x lnx− x+ln(2π)1/2 for all x ≫ 1 and expansion ln(1−1/Z) ≈ −1/Z, ln(1−N/Z) ≈ −N/Z, ln(1 ± si/ni) ≈ ±si/ni − (si/ni) 2/2, and assuming also N(N − 1) ≈ N 2, we will obtain ω(s) ≈ β exp { −N2/Z − 1 2 ∑ i s2i /ni } , (10) where β−1 = e(2π)d/2. With the growth of the quantity si of effective steps the chain end moves away from its origin increasing the conformational volume where those SAW trajectories are localized at that end in one of 2d equiprobable cells Mp(s). That is why the cells quantity Z, allowed for a SAW trajectory, is not a fixed parameter of distribution (10), but it is a function of vector s = (si) : Z = Z(s). This function choice can be made based on different geometrical estimations – see figure 1. For instance, if one considers that conformational volume of SAW trajectories is localized in d- dimensional rectangle with vertexes Mp(s), then Z = 2d ∏ i |si|. If one assumes that conformational volume is localized in the sphere with radius of R s = ( ∑ i s 2 i ) 1/2 then the expression Z = ( ∑ i s 2 i ) d/2 can be used for a definition. At least, if one assumes that fiducial cells Mp(s) belong to an ellipsoid surface, which semi-axes in accordance to canonical equation ∑ i s 2 i /b 2 i = 1 must be equal to bi = dd/2|si|, it can be laid: Z = dd/2 ∏ i |si|. The analysis has shown that this definition is the most suitable (it will be confirmed below), that is why we assume Z = dd/2 ∏ i |si|. (11) Putting together (10) and (11), we have ω(s) = β exp { −N2 / dd/2 ∏ i |si| − 1 2 ∑ i s2i /ni } , 1 6 si 6 ni. (12) Function ω(s) determines the probability of a complicated event meaning that RW trajectory is also a SAW trajectory at the same time and with it last step it falls into one of 2d equiprobable cells Mp(s) or one can say that it realizes the state Mp(s). This implies that it is numerically equal to the part of those SAW trajectories from the whole quantity of RW trajectories (2d)N , which realize the stateMp(s). Quantity L(s) of such trajectories define the thermodynamical probability of a realization of the state Mp(s) L(s) = (2d)Nω(s). (13) Summing L(s) over the whole set Ω of chain end states, we find the total quantity L of SAW trajectories L = (2d)N ∑ Ω ω(s). (14) Designating c(s) = ∑ Ω exp { −N2 / dd/2 ∏ i |si| − 1 2 ∑ i s2i /ni } , (15) 212 Statistics of linear polymer chains in the SAW model Figure 1. Geometrical variants of determination of RWEI trajectories conforma- tional volume at given coordinates of equiprobable states Mp(S) of chain end for a two-dimensional lattice. the function w(s) = 1/c(s) exp { −N2 / dd/2 ∏ i |si| − 1 2 ∑ i s2i /ni } (16) is normalized to unity and define the mathematical probability of chain end distri- bution over the states Mp(s) of d-dimensional lattice. It equals to the relation of quantity L(s) of those SAW trajectories, which realize the state Mp(s), to the total quantity of SAW trajectories L : w(s) = L(s)/L. In turn, the ratio L/(2d)N equals to the part of total number of SAW trajectories from the total number of RW trajectories and is a function g(N) of SAW trajectories fatigue, in accordance to terminology [5,6], and quantitatively, it can be determined via the normalizing constant of distribution (16): g(N) = L/(2d)N = βc(s). (17) 3. Statistics of SAWs in continuous space Expressions (12)–(17) represent the SAW statistics at d-dimensional lattice. Let us work with a metric space, incorporating the variable of shifting the x i-semi-axis of conformational ellipsoid, with the states Mp(s) belonging to its surface xi = a|si|d1/2 (18) 213 Yu.G.Medvedevskikh and parameter σi is the standard deviation of the Gaussian part of the distribution σ2 i = a2nid. (19) In accordance with (4), the coupling is laid on the value σi ∑ i σ2 i = a2Nd. (20) Since s2i /ni = x2 i /σ 2 i , d d/2 ∏ i |si| = ∏ i xi/a d , the distribution (12) can be rewritten as follows w(x) = 1/c(x) exp { −adN2 / ∏ i xi − 1 2 ∑ i x2 i /σ 2 i } , a 6 xi 6 ani. (21) If ximin = a ≪ ximax = ani, the distribution (21) can be considered as a continuous one with a normalizing constant c(x) = xmax ∫ xmin exp { −adN2 / ∏ i xi − 1 2 ∑ i x2 i /σ 2 i } dx, a 6 xi 6 ani, (22) where dx = Πidxi, and the integral is d-aliquot. In this case: c(x) = addd/2c(s). Substitution of (18) induces an essential distinction between w(x) and w(s): w(x) determines the probability w(x)dx that the SAW trajectory at given parameters N and σi will be ended in elementary volume dx, laying on an ellipsoid surface with semi-axes xi, i = 1, d. In the other case, all the surface of ellipsoid is a geometrical place of points or chain end states with the same corresponding distribution density w(x). Maximum of w(x) at given N and σi corresponds to the most probable or equilib- rium state of a polymer chain. Semi-axes x0 i of equilibrium conformational ellipsoid can be found from the condition ∂ lnw(x)/∂xi = adN2 / xi ∏ i xi − xi/σ 2 i = 0 when xi = x0 i . (23) Solving the system of algebraic equations (23), we obtain x0 i = σi ( adN2 / ∏ i σi )1/(d+2) . (24) Let us continue to consider the situation when all the directions of chain steps are equiprobable, i.e. ni = N/d, (25) σ2 i = σ2 0 = a2N. (26) Substitution of (26) into (24) makes the semi-axes of equilibrium ellipsoid equal, and equal to the radius of Flory coil x0 i = Rf = aNν , (27) where ν is defined by (3). 214 Statistics of linear polymer chains in the SAW model 4. Some properties of distribution in SAW statistics To avoid the utilization of parameter a, i.e., the length of chain link in calcula- tions, we will use a dimensionless variable λi = xi/Rf . (28) Besides, let us consider only the distribution corresponding to the condition (25) of RW equiprobability over the axes of d-dimensional space. In this case the expressions (21) and (22) can be rewritten as follows w(λ) = 1/c(λ) exp { −(Rf/σ0) 2 ( 1 / ∏ i λi + 1 2 ∑ i λ2 i )} , (29) c(λ) = I0, (30) I0 = λmax ∫ λmin exp { −(Rf/σ0) 2 ( 1 / ∏ i λi + 1 2 ∑ i λ2 i )} dλ, (31) where dλ = ∏ i dλi, λmin = ad1/2/Rf , λmax = aN/Rfd 1/2. Normalizing constants of distributions (21) and (29) are correlated with c(λ) = c(x)/Rd f , that is why we have a coupling c(s) = (Rf/a) dc(λ)/dd/2 = c(x)/addd/2. (32) In accordance to (26) and (27) (Rf/σ0) 2 = N (4−d)/(d+2). (33) Quantitative estimation of I0 (and of the following ones) is performed using the Romberg’s algorithm from Mathcad software with accuracy parameter of Tol = 10−4. Values I0 are listed in the table. Values λ0 i = 1, i = 1, d, relating to maximal distribution density, correspond to the equilibrium state of polymer coil w(λ0) = 1/c(λ) exp{−(Rf/σ0) 2(d+ 2)/2}. (34) Distribution density decreases at any deviation of values λi at λ 0 = 1: it this case it tends to zero not only at λi → λmax, but also at λi → λmin. Consequently, the probability of chain end placement close to its origin is negligibly small. The latter makes a radical distinction between SAW statistics and gaussian RW statistics. Figure 2 represents the illustrations for several variants of function w(λ) be- haviour for a three-dimensional space d = 3 at (Rf/σ0) 2 = N1/5, equal to 3 and 4, and changing of one variable λz at fixed values of λx = λy = 1, λx = λy = 0.8 and λx = λy = 1.25. The two latter variants clearly show what will happen at the defor- mation of polymer coil: at compression along x and y axes, polymer chain stretches along z axis transforming to oblong ellipsoid of revolution; on the contrary, at com- pression along z axis, polymer chain stretches along x and y axes transforming to oblate ellipsoid of revolution. 215 Yu.G.Medvedevskikh Figure 2. Behaviour of distribution density w(λ) at the variation of λ = λz and fixed values of λx and λy for d = 3. N1/5 = 3 (1, 2, 3), N1/5 = 4 (4), λx = λy = 1 (1, 4), λx = λy = 0.8 (2), λx = λy = 1.25 (3). Starting moments M(λk) (k = 1, 2) of distribution (29) are numerically calcu- lated (as it was mentioned before) using the correlation M(λk) = λmax ∫ λmin λk iw(λ)dλ. (35) Values M(λk) for Flory coil do not depend on the index i. Root-mean-square value λ0 = (M(λ2))1/2, dispersion D(λ) = M(λ2)− (M(λ))2 and standard deviation σ(λ) = (D(λ))1/2 of distribution (29) are calculated via the values M(λ) and M(λ2). A part of the data calculated is presented in the table. Table 1. Some characteristics of distribution density w(λ) N1/5 I0 I0(L) M(λ) M(λ2) λ0 D(λ) σ(λ) 2 7.72 · 10−3 8.39 · 10−3 1.139 1.487 1.219 0.191 1.437 4.0 1.91 · 10−5 2.00 · 10−5 1.073 1.246 1.116 0.094 0.307 6.0 7.11 · 10−8 7.33 · 10−8 1.048 1.163 1.078 0.065 0.255 8.0 3.13 · 10−10 3.21 · 10−10 1.035 1.125 1.060 0.053 0.230 10.0 1.52 · 10−12 1.55 · 10−12 1.026 1.099 1.048 0.045 0.217 12.0 7.79 · 10−15 7.9 · 10−15 1.024 1.083 1.041 0.034 0.185 216 Statistics of linear polymer chains in the SAW model 5. The fatigue function The fatigue function g(N) is defined by (17) and expresses the part of the total quantity of SAW trajectories from the total quantity of RW trajectories. The latter quantity (2d)N is strictly defined for the lattice only, i.e. for the discrete space of wanderings. The total quantity of RW trajectories for continuous space is unknown, however the fatigue function can still be defined by (17) via normalizing constant c(x). Considering coupling (32), we can express the fatigue function via normalizing constant c(λ): g(N) = β(Rf/a) dd−d/2c(λ). (36) One can use the quantitative values c(λ) = I0 presented in the table for calcu- lations. However, in case of d < 4 space, one can give an approximated analytical expression I0, using the Laplace’s method [10]. Then, at d = 3, the fatigue function can be written as follows g(N) ≈ g0N 3/2 exp{−5/2N1/5}, (37) where g0 = (e2 √ 533/2)−1. Function (37) possesses a maximum at N 1/5 = 3. Its graphical representation is given in figure 3. Figure 3. Dependence of fatigue function g(N) by (37) on a chain length N . 217 Yu.G.Medvedevskikh References 1. Kuhn W. // Koll. Zs., 1934, vol. 68. p. 2. 2. Volkenshtein M.V. Configurational Statistics of Polymer Chains. Moscow-Leningrad, USSR Academy of Sciences, 1959 (in Russian). 3. Flory P. Statistical Mechanics of Chain Molecules. Moscow, Mir, 1971 (in Russian). 4. Kuhn W. // Koll. Zs., 1936, vol. 76. p. 258. 5. Pietronero L. // Phys. Rev. Lett., 1985, vol. 55, No. 19, p. 2025. 6. Peliti L. Fractals Physics. – In: Proc. of the sixth Intern. Symp. on Fractals in Physics. ICTP, Trieste, Italy, July 9–12, 1985. 7. de Gennes P.G. Scaling Concepts in Polymer Physics. Ithaca, Cornell Univ. Press, 1979. 8. Gould H., Tobochnik J. An Introduction to Computer Simulation Methods. Appli- cations to Physical Systems. Part 2. Reading, Massachusetts, Addison-Wesley Publ. Co., 1988 (Russian translation: Moscow, Mir, 1990). 9. Jones R.A.L., Norton L.J., Scull K.R. // Macromolecules, 1992, vol. 25, No. 9, p. 2359. 10. Fedoryuk M.V. Saddle-point Technique. Moscow, Nauka, 1977 (in Russian). Статистика лінійних полімерних ланцюгів у моделі випадкових блукань із самоуниканням Ю.Г.Медведевських Відділення Інституту фізичної хімії ім. Л.В.Писаржевського НАН України 79053 Львів, вул. Наукова, 3а Отримано 20 грудня 2000 р. Запропонована точна статистика випадкових блукань із самоуникан- ням полімерного ланцюга у d-вимірному дискретному (гратка) і в не- перервному просторах. Одержані асимтотичні аналітичні вирази для розподілу і густини розподілу відповідних випадкових величин, що характеризують конформаційний стан полімерного ланцюга, дана їх кількісна оцінка. Показано, що конформація полімерного ланцюга має структуру сферичної або, у більш загальному випадку, еліпсоїд- ної оболонки, що дифузно розмита як назовні, так і всередину по- лімерного клубка, ядро якого з радіусом порядка половини радіуса Флорі статистично пусте. Статистика випадкових блукань без пере- тинів повністю описує ефект вилученого об’єму і збігається з резуль- татами методу Флорі у концепції П’єтронеро. Ключові слова: метод Флорі, статистика, випадкові блукання, полімерний ланцюг, конформація, функція виживання PACS: 05.40.Fb 218