The collective variables representation of simple fluids from the point of view of statistical field theory

The collective variable representation (CV) of classical statistical systems such as, for instance, simple liquids has been intensively developed by the Ukrainian school after seminal works by Prof. Ihor Yukhnovskii. The basis and the structure of the CV representation are reexamined here from th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Caillol, J.-M., Patsahan, O., Mryglod, I.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2005
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120513
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The collective variables representation of simple fluids from the point of view of statistical field theory / J.-M. Caillol, O. Patsahan, I. Mryglod // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 665–684. — Бібліогр.: 29 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The collective variable representation (CV) of classical statistical systems such as, for instance, simple liquids has been intensively developed by the Ukrainian school after seminal works by Prof. Ihor Yukhnovskii. The basis and the structure of the CV representation are reexamined here from the point of view of statistical field theory and compared with another exact statistical field representation of liquids based upon a Hubbard-Stratonovich transform. We derive a two-loop expansion for the grand potential and free energy of a simple fluid in both versions of the theory. The results obtained by the two approaches are shown to coincide at each order of the loop expansion. The one-loop results are identical to those obtained within the framework of the random phase approximation of the theory of liquids. However, at the second-loop level, new expressions for pressure and the free energy are obtained, yielding a new type of approximation.