Microscopic derivation of the hydrodynamic equations for the superfluid fermi-systems

Starting from the first principles of statistical mechanics, the two-fluid hydrodynamics of superconductor in ideal approximation is constructed. The system of equations of motion for normal and anomalous correlation functions is used for hydrodynamic description. Transition to equations of hydro...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Shygorin, P., Svidzynsky, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2005
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120515
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Microscopic derivation of the hydrodynamic equations for the superfluid fermi-systems / P. Shygorin, A. Svidzynsky // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 701–710. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-120515
record_format dspace
spelling irk-123456789-1205152017-06-13T03:05:20Z Microscopic derivation of the hydrodynamic equations for the superfluid fermi-systems Shygorin, P. Svidzynsky, A. Starting from the first principles of statistical mechanics, the two-fluid hydrodynamics of superconductor in ideal approximation is constructed. The system of equations of motion for normal and anomalous correlation functions is used for hydrodynamic description. Transition to equations of hydrodynamics is performed using an expansion of equations of motion for correlation functions in terms of a small parameter. Виходячи з перших принципів статистичної механіки, побудовано дворідинну гідродинаміку надпровідника в ідеальному наближенні. Для побудови гідродинаміки використано систему рівнянь руху для нормальної та аномальної кореляційних функцій. Перехід до рівнянь гідродинаміки здійснюється через розклад рівнянь руху для кореляційних функцій за малим параметром. 2005 Article Microscopic derivation of the hydrodynamic equations for the superfluid fermi-systems / P. Shygorin, A. Svidzynsky // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 701–710. — Бібліогр.: 7 назв. — англ. 1607-324X PACS: 05.30.Fk, 47.37.+q DOI:10.5488/CMP.8.4.701 http://dspace.nbuv.gov.ua/handle/123456789/120515 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Starting from the first principles of statistical mechanics, the two-fluid hydrodynamics of superconductor in ideal approximation is constructed. The system of equations of motion for normal and anomalous correlation functions is used for hydrodynamic description. Transition to equations of hydrodynamics is performed using an expansion of equations of motion for correlation functions in terms of a small parameter.
format Article
author Shygorin, P.
Svidzynsky, A.
spellingShingle Shygorin, P.
Svidzynsky, A.
Microscopic derivation of the hydrodynamic equations for the superfluid fermi-systems
Condensed Matter Physics
author_facet Shygorin, P.
Svidzynsky, A.
author_sort Shygorin, P.
title Microscopic derivation of the hydrodynamic equations for the superfluid fermi-systems
title_short Microscopic derivation of the hydrodynamic equations for the superfluid fermi-systems
title_full Microscopic derivation of the hydrodynamic equations for the superfluid fermi-systems
title_fullStr Microscopic derivation of the hydrodynamic equations for the superfluid fermi-systems
title_full_unstemmed Microscopic derivation of the hydrodynamic equations for the superfluid fermi-systems
title_sort microscopic derivation of the hydrodynamic equations for the superfluid fermi-systems
publisher Інститут фізики конденсованих систем НАН України
publishDate 2005
url http://dspace.nbuv.gov.ua/handle/123456789/120515
citation_txt Microscopic derivation of the hydrodynamic equations for the superfluid fermi-systems / P. Shygorin, A. Svidzynsky // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 701–710. — Бібліогр.: 7 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT shygorinp microscopicderivationofthehydrodynamicequationsforthesuperfluidfermisystems
AT svidzynskya microscopicderivationofthehydrodynamicequationsforthesuperfluidfermisystems
first_indexed 2025-07-08T18:00:39Z
last_indexed 2025-07-08T18:00:39Z
_version_ 1837102678047457280
fulltext Condensed Matter Physics, 2005, Vol. 8, No. 4(44), pp. 701–710 Microscopic derivation of the hydrodynamic equations for the superfluid fermi-systems P.Shygorin, A.Svidzynsky Lesya Ukrainka’s Volyn State University Received August 3, 2005 Starting from the first principles of statistical mechanics, the two-fluid hy- drodynamics of superconductor in ideal approximation is constructed. The system of equations of motion for normal and anomalous correlation func- tions is used for hydrodynamic description. Transition to equations of hy- drodynamics is performed using an expansion of equations of motion for correlation functions in terms of a small parameter. Key words: two-fluid hydrodynamics, correlation function, superfluid Fermi-systems PACS: 05.30.Fk, 47.37.+q 1. Introduction Due to specific properties the quantum liquids turn out to be a very interesting object in physical studies. They include superfluids He-3 and He-4, a superconducti- ng Fermi-systems, a trapped Bose gas, a core of neutron stars, etc [1,2]. In the weakly-nonequilibrium states the equations of hydrodynamics are very important tool of describing the afore-mentioned systems. The phenomena of superconduc- tivity and superfluidity are known to be deeply related. The property of the non- dissipative current states, that is caused by the phase transition to a more-organized state, unites them [3]. It is not surprising that the equations of hydrodynamics of these systems have a similar structure (the so-called two-fluid equations). The phe- nomenological hydrodynamics of superfluid He-4 was constructed by Landau in 1941 [4]. At the microscopic level these equations were derived by Bogoliubov in 1963 [5]. The two-fluid model of superconductor was derived in 1965 by Svidzynsky and Slusarev [6], and independently by Stephen [7]. The system of equations of moti- on for the normal and the anomalous correlation functions is the starting point for constructing the hydrodynamic equations in [5,6]. The transition to equations of hy- drodynamics is performed using an expansion of equations of motion for correlation functions in terms of a small parameter. The small parameter is introduced formally. c© P.Shygorin, A.Svidzynsky 701 P.Shygorin, A.Svidzynsky This is a noticeable drawback of these studies. In the [5] the so-called “parameter of homogeneity” is chosen as small parameter, while in [6] it is the Plank constant, which obviously was possible to put equal to unity. In the present paper, where following the chart of work [6], starting from the first principles of statistical mechanics, we derived the equations of two-fluid hydro- dynamics of superconductor in an ideal approximation. An electronic liquid in the superconductor is described by the four-fermion Hamiltonian, that reflects a direct interaction between electrons. In terms of the Heisenberg equations we constructed the equations of motion for correlation functions. The mean-field approach is used for disclosure of higher correlation functions. By writing down equations of motion in a dimensionless form it is possible to select a small parameter, which is equal to the ratio of the length of coherence to a characteristic length of changes in macro- scopic quantities (such as the mean number of particles, momentum, energy). The expansion in terms of this small parameter coincides with the expansion in terms of gradients of the macroscopic quantities. 2. Equations of motion for correlation functions Let us consider a superconductor in the BCS model. In this model the Hamilto- nian of the system of electrons in the presence of an external electromagnetic field in the second quantization representation is as follows (we set h̄ = c = 1 throughout this paper) Ĥ = ∑ σ ∫ d~rΨ+ σ (~r) { 1 2m (~̂p − e ~A(~r, t))2 + eA0(~r, t) } Ψσ(~r) + g ∫ d~rΨ+ ↑ (~r)Ψ+ ↓ (~r)Ψ↓(~r)Ψ↑(~r). (1) To construct the hydrodynamics of a system with spontaneous broken symmetry we should proceed from the extended system of correlation functions [5], which is formed both by a normal and by an anomalous correlation function. Therefore we will start with a system of correlation functions in the next form 〈Ψ+ ↑ (x1)Ψ↑(x2)〉, 〈Ψ↓(x1)Ψ↑(x2)〉. (2) Here xi ≡ (~ri, t), and the dependence of the creation and annihilation operators on time is given through a Heisenberg representation, for instance Ψ+ ↑ (x1) = eiĤtΨ+ ↑ (~r1)e −iĤt, the angular brackets indicate an average at the local-equilibrium ensemble. Using the Heisenberg’s equation of motion i ∂Ψσ(x) ∂t = [ Ψσ(x), Ĥ ] − , (3) 702 Hydrodynamic equations for the superfluid fermi-systems we obtain the equations of motion for correlation functions (2). These equations are as follows: { i ∂ ∂t + eA0(x1) − eA0(x2) } 〈Ψ+ ↑ (x1)Ψ↑(x2)〉 + 1 2m [ (~̂p1 + e ~A(x1)) 2 − (~̂p2 − e ~A(x2)) 2 ] 〈Ψ+ ↑ (x1)Ψ↑(x2)〉 = −g〈Ψ+ ↑ (x1)Ψ + ↓ (x1)Ψ↓(x1)Ψ↑(x2)〉 + g〈Ψ+ ↑ (x1)Ψ + ↓ (x2)Ψ↓(x2)Ψ↑(x2)〉, (4) { i ∂ ∂t − eA0(x1) − eA0(x2) } 〈Ψ↓(x1)Ψ↑(x2)〉 − 1 2m [ (~̂p1 − e ~A(x1)) 2 + (~̂p2 − e ~A(x2)) 2 ] 〈Ψ↓(x1)Ψ↑(x2)〉 = −g〈Ψ+ ↑ (x1)Ψ↓(x1)Ψ↑(x1)Ψ↑(x2)〉 + g〈Ψ↓(x1)Ψ + ↓ (x2)Ψ↓(x2)Ψ↑(x2)〉. (5) The obtained system of equations of motion is not a closed one due to the correlation functions of higher order in these equations. In order to make the closed system of equations we use a disclosure of Hartree-Fock-Bogoliubov type (the mean- field approximation). For instance 〈Ψ+ ↑ (x1)Ψ + ↓ (x1)Ψ↓(x1)Ψ↑(x2)〉 = 〈Ψ+ ↑ (x1)Ψ + ↓ (x1)〉〈Ψ↓(x1)Ψ↑(x2)〉 + 〈Ψ+ ↑ (x1)Ψ↑(x2)〉〈Ψ + ↓ (x1)Ψ↓(x1)〉 − 〈Ψ+ ↑ (x1)Ψ↓(x1)〉〈Ψ + ↓ (x1)Ψ↑(x2)〉, (6) and similarly the other averages. After using the disclosure of type (6) the equation of motion (4), (5) will be as follows { i ∂ ∂t + eA0(x1) − eA0(x2) } 〈Ψ+ ↑ (x1)Ψ↑(x2)〉 + 1 2m [ (~̂p1 + e ~A(x1)) 2 − (~̂p2 − e ~A(x2)) 2 ] 〈Ψ+ ↑ (x1)Ψ↑(x2)〉 (7) = ∆(x2)〈Ψ + ↑ (x1)Ψ + ↓ (x2)〉 − ∆∗(x1)〈Ψ↓(x1)Ψ↑(x2)〉, { i ∂ ∂t − eA0(x1) − eA0(x2) } 〈Ψ↓(x1)Ψ↑(x2)〉 − 1 2m [ (~̂p1 − e ~A(x1)) 2 + (~̂p2 − e ~A(x2)) 2 ] 〈Ψ↓(x1)Ψ↑(x2)〉 = ∆(x1)δ(~r1 − ~r2) − ∆(x1)〈Ψ + ↑ (x1)Ψ↑(x2)〉 − ∆(x2)〈Ψ + ↓ (x2)Ψ↓(x1)〉. (8) Here ∆(x) ≡ g〈Ψ↓(x)Ψ↑(x)〉 (9) is the order parameter. We note that in the obtained equations (7), (8) the terms not relevant to the effect of superconductivity (Hartree and Fock terms) have been dropped. However, taking into account that the terms of Hartree type are trivial, one may include them into potential A0(x). 703 P.Shygorin, A.Svidzynsky The next step will be a separation of gauge-noninvariant multipliers (in fact we will use a reference system in which the condensate is motionless). Such a separation of phase has the following form [3] 〈Ψ+ σ (x1)Ψσ(x2)〉 = exp {im(χ(x2) − χ(x1))}Gσ(x1, x2), 〈Ψ↓(x)Ψ↑(x)〉 = exp {im(χ(x2) + χ(x1))}F (x1, x2), ∆(x) = exp {2imχ(x)} |∆(x)|. (10) Then the equations of motion for G and F are as follows: { i ∂ ∂t + 1 2m [ (~̂p1 − m~vs(x1)) 2 − (~̂p2 + m~vs(x2)) 2 ] } G↑(x1, x2) + {mχ̇(x1) − mχ̇(x2) + eA0(x1) − eA0(x2)}G↑(x1, x2) = |∆(x2)|F ∗(x2, x1) − |∆(x1)|F (x1, x2), (11) { i ∂ ∂t − 1 2m [ (~̂p1 + m~vs(x1)) 2 + (~̂p2 + m~vs(x2)) 2 ] } F (x1, x2) − {mχ̇(x1) + mχ̇(x2) + eA0(x2) + eA0(x1)}F (x1, x2) = |∆(x1)|δ(~r1 − ~r2) − |∆(x1)|G↑(x1, x2) − |∆(x2)|G↓(x2, x1), (12) where ~vs = ∇χ − e m ~A is superfluid velocity (velocity of the condensate). It is a gauge-invariant combinati- on, because a change of calibration may be compensated by a gauge transformation of the vector potential. The transition to equations of hydrodynamics is performed using an expansion of equations (11) and (12) in terms of space gradients. This expansion can be simply performed by using the so-called mixed Wigner representation [3]. To this end we introduce new variables ~R = 1 2 (~r1 + ~r2), ~r = ~r2 − ~r1 . After the Fourier transformation with respect to relative coordinate ~r we obtain f(x1, x2) → f(~R,~r, t) = ∫ d~p (2π)3 f(~R, ~p, t)ei~p~r, and ~r1 → ~R − i 2 ∇~p , ~r2 → ~R + i 2 ∇~p , ~̂p1 → ~p − i 2 ∇~R, ~̂p2 → −~p − i 2 ∇~R . (13) Any function of ~R + i/2 · ∇~p can be understood in terms of its power-series expansion f ( ~R + i 2 ∇~p ) = f ( ~R ) + i 2 ∂f(~R) ∂ ~R ∂ ∂~p − · · · . (14) 704 Hydrodynamic equations for the superfluid fermi-systems Using procedures (13) and (14) the equations for correlation functions can be written as follows i { ∂ ∂t + eEi ∂ ∂pi − mv̇si ∂ ∂pi − ∂ ∂Rj ( (pi + mvsi) 2 2m ) ∂ ∂pj + ( pi m + vsi ) ∂ ∂Ri } G↑(~R, ~p, t) = |∆(~R, t)| ( F ∗(~R, ~p, t) − F (~R, ~p, t) ) − i 2 ∂|∆(~R, t)| ∂Ri ∂ ∂pi ( F ∗(~R, ~p, t) + F (~R, ~p, t) ) , (15) { i ∂ ∂t − 2eA0(~R, t) − 2mχ̇(~R, t) − i ( pi ∂vsi ∂Rj ∂ ∂pj − vsi ∂ ∂Ri ) − ( p2 m + vs 2 )} F (~R, ~p, t) = |∆(~R, t)| ( 1 − G↑(~R, ~p, t) − G↓(~R,−~p, t) ) − i 2 ∂|∆(~R, t)| ∂Ri ∂ ∂pi (G↑(~R, ~p, t) − G↓(~R,−~p, t)). (16) In the obtained equations the second order terms with respect to space gradient (the terms proportional to ∇2 ~R ) were neglected. 3. Two-fluid hydrodynamics By solving equations (15), (16) we use the perturbation theory. Therefore, we have to determine the order of other terms in these equations. Let L be the length, on which the macroscopic quantities can change (it scales with the size of the system). Then |∇~R| ∼ L−1, ∂ ∂t ∼ ūL−1 ∼ vF Tc EF L−1, (17) where Tc is critical temperature, EF = (mv2 F)/2 = (p2 F)/(2m) is Fermi energy. The characteristic momenta are of the order of Fermi momentum, therefore we can put p = pF + ξ vF , ξ ∼ Tc . Then |∇~p| ∼ vF Tc ∼ ξ0 ∼ 10−4cm, where ξ0 is the coherence length. The gap ∆ is of the order Tc. This theory has two small parameters. It is ξ0/L and a/ξ0 = Tc/EF, where a is the interatomic distance. The first parameter is associated with the hydrodynamic approach, while the second is semi-classical. Hereinafter the semi-classical motion of electrons will be neglected. Therefore, we may put Tc ∼ EF. We denote α = ξ0 L � 1. (18) 705 P.Shygorin, A.Svidzynsky Dividing equations (15) and (16) by Tc and using (18) we get iα { ∂ ∂t + eEi ∂ ∂pi − mv̇si ∂ ∂pi − ∂ ∂Rj ( (pi + mvsi) 2 2m ) ∂ ∂pj + ( pi m + vsi ) ∂ ∂Ri } G↑(~R, ~p, t) = |∆(~R, t)| ( F ∗(~R, ~p, t) − F (~R, ~p, t) ) − α i 2 ∂|∆(~R, t)| ∂Ri ∂ ∂pi ( F ∗(~R, ~p, t) + F (~R, ~p, t) ) , (19) { iα ∂ ∂t − 2eA0(~R, t) − 2mχ̇(~R, t) − iα ( pi ∂vsi ∂Rj ∂ ∂pj − vsi ∂ ∂Ri ) − ( p2 m + vs 2 )} F (~R, ~p, t) = |∆(~R, t)| ( 1 − G↑(~R, ~p, t) − G↓(~R,−~p, t) ) − α i 2 ∂|∆(~R, t)| ∂Ri ∂ ∂pi (G↑(~R, ~p, t) − G↓(~R,−~p, t)). (20) In order to solve the equations (19) and (20) we formally expand the functions G, F and ∆ in powers of α f = f (0) + αf (1). (21) In the lowest order equation (19) gives F (0)∗(~R, ~p, t) = F (0)(~R, ~p, t), (22) that means a real function F (0). The equation (20) by using (22) in the lowest order gives ( eA0(~R, t) + mχ̇(~R, t) + 1 2 mv2 s( ~R, t) ) F (0)(~R, ~p, t) = − p2 2m F (0)(~R, ~p, t) − 1 2 |∆(0)(~R, t)|(1 − G (0) ↑ (~R, ~p, t) − G (0) ↓ (~R,−~p, t)). (23) The separation of variables gives eA0(~R, t) + mχ̇(~R, t) + 1 2 mv2 s(~R, t) + µ(~R, t) = 0, (24) and 2ξpF (0) ( ~R, ~p, t ) + |∆(0) ( ~R, t ) | ( 1 − G (0) ↑ ( ~R, ~p, t ) − G (0) ↓ ( ~R,−~p, t )) , (25) where ξp = p2/(2m) − µ and µ – is the order of separation of variables. In the local equilibrium state µ – is chemical potential and equation (25) is reduced to the equation for order parameter. Applying the operation ∇~R to equation (24) we obtain the equation of motion for superfluid velocity m ∂~vs ∂t + ∇~R ( m~v2 s 2 + µ ) = e ~E. (26) 706 Hydrodynamic equations for the superfluid fermi-systems By using the vector identity 1 2 ∇~v2 s = ~vs × (∇× ~vs) + ~vs · ∇~vs = − e m ~vs × ~H + ~vs · ∇~vs . Equation (15) can be written as follows m d~vs dt = e [ ~E + (~vs × ~H) ] −∇µ. (27) This is the first hydrodynamic equation and shows that the superfluid accelerates freely under the applied fields. The remaining hydrodynamic equations are provided by the conservation relations for the particle density ρ(~R, t), momentum density ~j(~R, t) and energy density E(~R, t). Let us consider the first order of equations (19) and (20). These equations are as follows: ∂G (0) ↑ (~R, ~p, t) ∂t + ( pi m + vsi ) ∂G (0) ↑ (~R, ~p, t) ∂Ri + ∂G (0) ↑ (~R, ~p, t) ∂pi × ( eEi − mv̇si − ∂ ∂Ri ( (~p + m~vs) 2 2m )) − ∂∆(0)(~R, t) ∂Ri ∂F (0)(~R, ~p, t) ∂pi = 2|∆(0)(~R, t)|ImF (1)(~R, ~p, t), (28) ∂F (0)(~R, ~p, t) ∂t + 2i ( eA0(~R, t) + mχ̇(~R, t) + 1 2 mv2 s(~R, t) + p2 2m ) F (1)(~R, ~p, t) = ∂∆(0)(~R, t) ∂Rj ∂ ∂pj ( G (0) ↑ (~R, ~p, t) − G (0) ↓ (~R,−~p, t) ) + ∂ ∂pj ( pi ∂vsi ∂Rj F (0)(~R, ~p, t) ) − ∂ ∂Ri ( vsiF (0)(~R, ~p, t) ) − i|∆(1)(~R, t)| ( 1 − G (0) ↑ (~R, ~p, t) − G (0) ↓ (~R,−~p, t) ) . (29) The relations for ρ, ~j and E follow simply from calculation of moments of (28) and (29)(see [6]). By definition ρ(~R, t) = 2m ∫ d~p (2π)3 G (0) ↑ (~R, ~p, t) (30) and after integrating (28) over ~p we find ∂ρ ∂t + div~j = 0, (31) where ~j(~R, t) = 2 ∫ d~p (2π)3 ~pG (0) ↑ (~R, ~p, t) + ρ~vs ≡ ~j0 + ρ~vs . 707 P.Shygorin, A.Svidzynsky By analogy, a simple calculation gives ∂jk ∂t + ∂Πik ∂Ri = e m ρEk + e mc Hkiji , (32) where Hki is magnetic field intensity tensor and stress tensor Πik is given by Πik = 2 m ∫ d~p (2π)3 (pi + mvsi)(pk + mvsk)G (0) ↑ (~R, ~p, t) + δik ∆(0)(~R, t) g . (33) The energy density (without mean-field energy) is E(~R, t) = 1 m ∫ d~p (2π)3 (~p + m~vs) 2G (0) ↑ (~R, ~p, t) + |∆(0)(~R, t)|2 g , (34) or E = E0 +~j0~vs + 1 2 ρv2 s , where E0 = 1 m ∫ d~p (2π)3 p2G (0) ↑ (~R, ~p, t) + |∆(0)(~R, t)|2 g . Using (28), (29) and (24) we obtain ∂E ∂t + div ~Q = e m ~E~j, (35) the energy current is given by ~Q = ∫ d~p (2π)3 (~p + m~vs) ( ~p m + ~vs )2 G (0) ↑ ( ~R, ~p, t ) + 2 ∆(0) ( ~R, t ) g ~vs . (36) The flows of hydrodynamic quantities may be calculated if we assume that in zeroth approximation the thermodynamic local equilibrium is provided by the gra- dients. In local equilibrium G (0) ↑ = υ2 ~p + u2 ~pf ( ε~p − ~u~p T ) − υ2 ~pf ( ε~p + ~u~p T ) , (37) where f(x) = (ex + 1)−1, u2 ~p = 1 2 ( 1 + ξ~p ε~p ) , υ2 ~p = 1 2 ( 1 − ξ~p ε~p ) , ε~p = √ ξ2 ~p + ∆2. Using expression (37) we obtain ~j = ρs~vs + ρn~vn, ~vn ≡ ~u + ~vs , Πik = ρnvnivnk + ρsvsivsk + δikP, ~Q = ( v2 s 2 + µ m ) ~j + TS~vn + ρn~vn(~vn · (~vn − ~vs)). (38) 708 Hydrodynamic equations for the superfluid fermi-systems Here ρn = 1 u2 ∫ d~p (2π)3 ~p~uf ( ε~p − ~u~p T ) is normal density, ρs = ρ − ρn is superfluid density, P = TS − E0 + u2ρn + ρµ/m is pressure, and entropy is represented as follows: S = 2 ∫ d~p (2π)3 ln ( 1 + exp ( ε~p − ~u~p T )) + 2 T ∫ d~p (2π)3 f ( ε~p − ~u~p T ) . The equations (27), (31), (32), (35) and (38) form a complete system of magneto- hydrodynamic equations for superconductor. References 1. Nozières P., Pines D. The Theory of Quantum Liquids. Addison-Wesley, Redwood City, California, 1990. 2. Yakovlev D.G., Levenfish K.P., Shibanov Yu.A., Usp. Fiz. Nauk, 1999, 169, 825 (in Russian). 3. Svidzynsky A.V. Microscopic Theory of Superconductivity. Lutsk, Veza, 2001 (In Ukrainian). 4. Landau L.D., JETF, 1941, 11, 592 (in Russian). 5. Bogolubov N.N. To the question about hydrodynamics of superfluid liquid. Preprint UINR, Dubna, 1963 (in Russian). 6. Svidzynsky A.V. The Space Inhomogenous Problems Theory of Superconductivity. Moscow, Nauka, 1982 (in Russian). 7. Stephen M.J. Phys. Rev. A, 1965, 139, 197. 709 P.Shygorin, A.Svidzynsky Мікроскопічне виведення рівнянь гідродинаміки для надплинних фермі систем А.Свідзинський, П.Шигорін Волинський державний університет ім. Лесі Українки Отримано 3 серпня 2005 р. Виходячи з перших принципів статистичної механіки, побудовано дворідинну гідродинаміку надпровідника в ідеальному наближенні. Для побудови гідродинаміки використано систему рівнянь руху для нормальної та аномальної кореляційних функцій. Перехід до рівнянь гідродинаміки здійснюється через розклад рівнянь руху для кореля- ційних функцій за малим параметром. Ключові слова: дворідинна гідродинаміка, кореляційна функція, надплинні Фермі-системи PACS: 05.30.Fk, 47.37.+q 710