Scaling in charged fluids: beyond simple ions

The analytical solution of the Mean Spherical Approximation for a quite general class of interactions is always a function of a reduced set of scaling matrices Γχ. We extend this result to systems with multipolar interactions: We show that for the ion-dipole mixture the thermodynamic excess...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2001
1. Verfasser: Blum, L.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2001
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/120519
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Scaling in charged fluids: beyond simple ions / L. Blum // Condensed Matter Physics. — 2001. — Т. 4, № 4(28). — С. 611-620. — Бібліогр.: 26 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-120519
record_format dspace
spelling irk-123456789-1205192017-06-13T03:04:55Z Scaling in charged fluids: beyond simple ions Blum, L. The analytical solution of the Mean Spherical Approximation for a quite general class of interactions is always a function of a reduced set of scaling matrices Γχ. We extend this result to systems with multipolar interactions: We show that for the ion-dipole mixture the thermodynamic excess functions are a functional of this matrix. The result for the entropy is S = −{kV/3π}(F[Γα])α∈χ where F is an algebraic functional of the scaling matrices of irreducible representations χ of the closure of the OrnsteinZernike. The result is also true for arbitrary electrostatic multipolar interactions. Аналітичний розв’язок середньосферичного наближення для достатньо загального класу взаємодій є завжди функцією редукованого набору скейлінгових матриць. Ми розширюємо цей результат на випадок систем з мультипольними взаємодіями. Ми показуємо, що для іонно-дипольної суміші термодинамічні надлишкові функції є функціями цієї матриці. Результат для ентропії є S = −{kV /3π}(F[Γα])α∈χ, де F – алгебраїчний функціонал скейлінгових матриць незвідних представлень замикання Орнштейна-Церніке. Результат дійсний також і для довільних електростатичних мультипольних взаємодій. 2001 Article Scaling in charged fluids: beyond simple ions / L. Blum // Condensed Matter Physics. — 2001. — Т. 4, № 4(28). — С. 611-620. — Бібліогр.: 26 назв. — англ. 1607-324X PACS: 61.20.Gy DOI:10.5488/CMP.4.4.611 http://dspace.nbuv.gov.ua/handle/123456789/120519 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The analytical solution of the Mean Spherical Approximation for a quite general class of interactions is always a function of a reduced set of scaling matrices Γχ. We extend this result to systems with multipolar interactions: We show that for the ion-dipole mixture the thermodynamic excess functions are a functional of this matrix. The result for the entropy is S = −{kV/3π}(F[Γα])α∈χ where F is an algebraic functional of the scaling matrices of irreducible representations χ of the closure of the OrnsteinZernike. The result is also true for arbitrary electrostatic multipolar interactions.
format Article
author Blum, L.
spellingShingle Blum, L.
Scaling in charged fluids: beyond simple ions
Condensed Matter Physics
author_facet Blum, L.
author_sort Blum, L.
title Scaling in charged fluids: beyond simple ions
title_short Scaling in charged fluids: beyond simple ions
title_full Scaling in charged fluids: beyond simple ions
title_fullStr Scaling in charged fluids: beyond simple ions
title_full_unstemmed Scaling in charged fluids: beyond simple ions
title_sort scaling in charged fluids: beyond simple ions
publisher Інститут фізики конденсованих систем НАН України
publishDate 2001
url http://dspace.nbuv.gov.ua/handle/123456789/120519
citation_txt Scaling in charged fluids: beyond simple ions / L. Blum // Condensed Matter Physics. — 2001. — Т. 4, № 4(28). — С. 611-620. — Бібліогр.: 26 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT bluml scalinginchargedfluidsbeyondsimpleions
first_indexed 2025-07-08T18:01:00Z
last_indexed 2025-07-08T18:01:00Z
_version_ 1837102701740032000
fulltext Condensed Matter Physics, 2001, Vol. 4, No. 4(28), pp. 611–620 Scaling in charged fluids: beyond simple ions L.Blum Department of Physics P.O. Box 23343, University of Puerto Rico, Rio Piedras, PR 00931-3343 Received September 28, 2001 The analytical solution of the Mean Spherical Approximation for a quite general class of interactions is always a function of a reduced set of scal- ing matrices Γχ . We extend this result to systems with multipolar inter- actions: We show that for the ion-dipole mixture the thermodynamic ex- cess functions are a functional of this matrix. The result for the entropy is S = −{kV /3π}(F [Γα])α∈χ where F is an algebraic functional of the scal- ing matrices of irreducible representations χ of the closure of the Ornstein- Zernike. The result is also true for arbitrary electrostatic multipolar interac- tions. Key words: Coulomb systems, mean spherical approximation, entropy, ion-dipole mixtures PACS: 61.20.Gy 1. Introduction It is my pleasure to contribute to this issue dedicated to J.-P.Badiali a true scientist and a gentleman. The remarkable simplicity of the mean spherical approximation (MSA) [1–4] and its extensions using Yukawa closures [5–7] can be summarized by the fact that the entropy for a wide class of systems has a very simple functional form. The MSA [8] is the solution of the linearized Poisson-Boltzmann equation, just as the Debye- Hückel (DH) theory. It shares with the DH theory the remarkable simplicity of a one parameter description (the screening length κ) of all the thermodynamic and structural properties of rather diverse systems. The MSA shares this feature with the DH theory [9]. The major difference is that in the MSA the excluded volume of all the ions is treated exactly. The MSA is attractive for chemists examining the thermodynamic properties of real electrolyte solutions not only because the model gives simple analytical formulas, but also satisfies exact asymptotic relations, such as the large charge, large density limits of Onsager [10–13] and more recently, the large charge small density limits c© L.Blum 611 L.Blum implied in the Wertheim-Ornstein-Zernike equation. Very recently [5,6] we have been able to extend the MSA closure analytical solutions to any arbitrary closure that can be expanded in damped exponentials (Yukawa functions), and to obtain explicit, analytical forms of the excess thermodynamic functions in terms of a matrix of scaling parameters (the EMSSAP, or Equivalent Mean Spherical Scaling Approach [7]). For systems with Coulomb and screened Coulomb interactions in a variety of mean spherical approximations (MSA) it is known that the solution of the Orn- stein Zernike (OZ) equation is given in terms of a single screening parameter Γ. This includes the ‘primitive’ model of electrolytes,in which the solvent is a contin- uum dielectric, but also models in which the solvent is a dipolar hard sphere, and much more recently the YUKAGUA model of water that has the correct tetrahedral structure. The MSA can be deduced from a variational principle in which the energy is obtained from simple electrostatic considerations and the entropy is a universal function. For the primitive model it is ∆S = −kV Γ3 3π , where Γ is the MSA screening parameter and in general it will be of the form ∆S = S(Γ), which is independent of the form of the cavity in this approximation and Γ . is now the scaling matrix. We have shown that in all known cases the scaling matrix Γ is obtained from the variational principle ∂A ∂Γ = 0 (1) Ionic solutions are mixtures of charged particles, the ions, and the neutral solvent particles, most commonly water, which has an asymmetric charge distribution, a large electric dipole and higher electric moments. Because of the special nature of these forces the charge distribution around a given ion and the thermodynamics does satisfy a series of conditions or sum rules. One remarkable property of mixtures of classical charged particles is that because of the very long range of the electrostatic forces, they must create a neutralizing atmosphere of counterions, which shields perfectly any charge or fixed charge distribution. Otherwise the partition function, and therefore all the thermodynamic functions, will be divergent [14]. The size of the region where this charge shielding occurs depends not only on the electrostatics, but also on all the other interactions of the system. For spherical ions this means: 1. The internal energy E of the ions is always the sum of the energies of capac- itors. For spherical ions the capacitor is a spherical capacitor, and the exact 612 Scaling in charged fluids form of the energy is ∆E = −e2 ε ∑ i ρizi z∗i 1/Γi + σi , (2) where z∗i is the effective charge, β = 1/kT is the usual Boltzmann thermal factor, ε is the dielectric constant, e is the elementary charge, and ions i have charge, diameter and density ezi, σi, ρi, respectively. For the continuum dielectric primitive model Γ i = Γ for all i. 2. The Onsagerian limits. When the ionic concentration goes to infinity and at the same time the charge diverges, then the limiting energy is bounded by ∆E = −e2 ε ∑ i ρizi z∗i σi , (3) obtained by setting Γi → ∞ 3. A further exact limit is the DH limiting law, which simply requires that for all ions in the system 2Γi → κ with κ2 = 4πβe2 ε m ∑ j=1 ρjz 2 j . (4) 4. Finally in systems that are strongly associating in the limit of total association the above equation still holds. This means that if component 1 forms a n-mer the DH limiting law must satisfy κ2 = 4πβe2 ε   m ∑ j=2 ρjz 2 j + ρ1(nz1) 2   . (5) This limiting law is not satisfied by any closure of the regular Ornstein-Zernike equation, but only for closures of the Wertheim-Ornstein-Zernike equation [15,16]. 1.1. Charge-charge interactions For the primitive model of ionic solutions in the general case [9] the parameter Γ is determined from the equation 4πe2 ǫWkBT ∑ i ρiz 2 i (1 + Γ)2 = 4Γ2, (6) where the ionic charge is zie and number density ρi = Ni/V , where Ni is the number of ions and V is the volume of the system. We have κ2 (1 + Γ)2 = 4Γ2, (7) 613 L.Blum where κ is defined by equation (5). The known analytical MSSA solutions for dimers and polymers satisfy a ‘universality’ principle for the excess entropy ∆S(MSA) = −kV Γ3 3π . (8) Then Γ is determined in every case by the simple variational equation (1) ∂[β∆E(Γ) + Γ3/(3π)] ∂Γ = 0. (9) This equation is also obtained by solving the MSA using the standard procedure. 1.2. Dipole-dipole interactions For a system of hard spheres with a permanent dipole moment µs the MSA result can be expressed in terms of a single parameter λ. Following Wertheim [17], we have d22 = λ2(λ+ 2)2 9 ( 1− 1 ǫW ) , (10) where d22 = 4πρsµ 2 s 3kBT (11) and ρs is the solvent number density. Furthermore, the MSA dielectric constant ǫW of the solvent is given by ǫW = λ2(λ+ 1)4 16 . (12) As has been often done in the literature, the parameter λ can be computed direct- ly from the dielectric constant ǫW using the above cubic equation. This parametriza- tion defines an effective polarization parameter. Just as in the case of the ions, there is a physically meaningful way of interpreting the MSA for point dipoles using the variational principle (1). The dipolar system can be represented by a collection of dipolar spheres [12]. A dipolar sphere in a dielectric continuum λ = ǫin ǫout , b2 6 = geffk , where b2 is the dipole-dipole energy parameter defined below equation (23) and g eff k is the effective Kirkwood parameter for this system. From here we calculate the induced dipole Xd = 3d2 λ+ 2 = d2β6 and the excess energy βE = d2Xd . 614 Scaling in charged fluids So that the closure equation can be rewritten as 9d22 (λ+ 2)2 = λ2 − 16 (λ+ 1)4 . (13) This corresponds to exactly equation (1) in the form ∂βE V ∂λ = − π V k ∂S ∂λ = λ2 − 16 (λ+ 1)4 , (14) which can be integrated to yield − π kV S = 1 3 [ λ3 + 2 ( 2 λ+ 1 )3 ] − 1. (15) Now if we define the scaling lengths for the irrep χ = 0 Γ0 = λ and for χ = ±1 Γ1 = 2 λ+ 1 , then − π V k S = 1 3 [ (Γ0) 3 + 2 (Γ1) 3 ] − 1. (16) Notice that they satisfy the Wertheim ‘density’ of the irreps since they are obtained by setting ρ1 = −(1/2)ρ0 . Furthermore, observe that because of the structure of the equations the natural assignment is Xd = 3 λ+ 2 d2 = β6d2 . (17) 1.3. Charge-dipole interactions We summarize the results of the previous work [18–24]. We use the invariant expansion formalism [25], in which the total pair correlation h(12) is expanded in terms of rotational invariants h(12) = ĥ000(r12)+ĥ011(r12)Φ̂ 011+ĥ101(r12)Φ̂ 101+ĥ110(r12)Φ̂ 110+ĥ112(r12)Φ̂ 112, (18) where ĥmnℓ(r12) is the coefficient of the invariant expansion, which depend only on the distance r12 between spheres 1 and 2. The rotational invariants Φ̂mnℓ depend only on the mutual orientations of the molecules. For the present case the relevant correlation functions are • ion-ion: hii(r) = (1/2) [ ĥ000 ++(r)− ĥ000 +− (r) ] ; (19) 615 L.Blum • ion-dipole: hin(r) = (1/2) [ ĥ011 +n (r)− ĥ011 −n (r) ] (r̂ · µ̂); (20) • dipole-dipole: hnn(r) = − √ 3ĥ110 nn (r)µ̂1 · µ̂2 + √ 15 2 ĥ112 nn (r) [3(r̂ · µ̂1)(r̂ · µ̂2)− µ̂1 · µ̂2] , (21) where µ̂ is the unit vector in the direction of µ. The solution of the MSA is given in terms of the ‘energy’ parameters • ion-ion: b0 = 2πρi ∫ ∞ 0 drhii(r)r; (22) • ion-dipole: b1 = 2π √ ρiρs 3 ∫ ∞ 0 drhin(r); (23) • dipole-dipole: b2 = 3πρs √ 2 15 ∫ ∞ 0 dr ĥ112(r) r , (24) which, as will be shown below are proportional to the ion-ion, ion-dipole and dipole- dipole excess internal energy [21]. In the MSA they are functions of the ion charge and the solvent dipole moment, through the parameters d20 = 4πe2 kBT ∑ j ρjz 2 j (25) and d22 is defined by equation (11) These parameters are required to satisfy the following equations [18] a21 + a22 = d20 , (26) a1K10 − a2[1−K11] = d0d2, (27) K2 10 + [(1−K11)] 2 = y21 + d22 . (28) where D = 1 + B1 (29) with B1 = b21 4β2 6 = b21(λ+ 2)2 36 , (30) β6 = 1− b2 6 . 616 Scaling in charged fluids A simple set of equations is obtained when we use the proper scaling lengths [22,23]. In terms of the excess energy parameters b0, b1 and b2 of equations (22–24): b0 = −Γ 1 + Γ + B1DΛ , (31) b1 = √ B1 6 2 + λ (32) and b2 = 6 λ− 1 2 + λ . (33) The entropy can be computed using [21,26] S kV = β V [E −A], (34) which leads to S kV = 1 12π ( b0d0 2 − 4 b1d0d2 − 6b2d 2 2 + 2 q′ 2 +Q′ dd 2 + 2Q′ id 2 + [Q′ ii] 2 ) . (35) The contact pair correlations are [21–23] • ion-ion Q′ ii = 2 D{[Γ]2 + B1}; (36) • ion-dipole Q′ id = 2 √ B1 D {[1 + Γ]Dλg − 1]}; (37) • dipole-dipole Q′ dd = 2 D{[λ2 − 1 + B1[D2 λg − 1]} (χ = 0), q′ = (λ− 1)(λ+ 3) (λ+ 1)2 (χ = 1). (38) We also get a1 = 2 DΓ(1 + Γ), (39) a2 = −2 √ B1 D (1 + Γ)Dλg (40) with Dλg = 1 + [Γ + λ], (41) Ddd = 1 + 3Γ 2 + λ , (42) 617 L.Blum DΛ = 1 1 + Γ + { 1 2 + λ } , (43) Df = β6 2(1 + Γ)  1 + ( b1(2 + λ) 6 )2   , (44) B1 = ( b1(2 + λ) 6 )2 . (45) We have 1−K11 = 2 + λ 3D {λ+ [1 + Γ]B1DλgDΛ} (46) and K10 = (2 + λ) √B1 3D (1 + Γ) [ (1 + Γ)DΛ − { 1 2 + λ }] . (47) Our main result is the new expression for the MSA excess entropy S = − ( kV 3π ) {s0 + s1} (48) with s0 =  Γ3 T √ √ √ √ { 1− 16D Γ2 T (1 + λ)4 }{ 1 + 16[(D(1− 2Γ2 T ) + λ2 − 1] Γ4 T (1 + λ)4 }   , (49) s1 = [ 32 (1 + λ)3 ( 1− D 2(1 + λ) ) − 3 ] (50) and ΓT = √ Γ2 + λ2 + 2B1 (1 + Γ) (1 + λ) D . (51) The excess pressure can also be computed [26]. The expression is [22] P/kBT = S/V kB . (52) Then, G = E (53) still holds. It is easy to see that this expression yields the correct asymptotic results when either the ions or the dipoles are turned off. Another interesting limit is that of very large dielectric constant. Then we get S = ( kV 3π ) {Γ3 T}. (54) A full discussion of these results will be done in a future publication. 618 Scaling in charged fluids 2. Acknowledgements The author thanks the National Science Foundation for support through grant NSF–CHE–95–13558 and to the Department of Energy for grant DOE–EPSCoR grant DE–FCO2–91ER75674. References 1. Blum L. // Mol. Phys., 1975, vol. 30, p. 1529. 2. Blum L. // J. Stat. Phys., 1978, vol. 18, p. 451. 3. Blum L., Kalyuzhnyi Yu.V., Bernard O., Herrera J.N. // J. Physics Cond. Matter, 1996, vol. 8, p. A143. 4. Holovko M.F., Kalyuzhnyi Yu.V. // Mol. Phys., 1991, vol. 73, p. 1145; Kalyuzh- nyi Yu.V., Protsykevytch I.A., Holovko M.F. // Chem. Phys. Letters, 1993, vol. 215, p. 1. 5. Blum L., Ubriaco M. // Mol. Physica A, 2000, vol. A 279, p. 224. 6. Blum L., Ubriaco M. // Mol. Phys., 2000, vol. 98, p. 829. 7. Blum L., Hernando J.A. Proceedings of the 24th International Workshop on Con- densed Matter Physics. Plenum Press, New York, 2001. 8. Percus J.K., Yevick G.J. // Phys. Rev. B, 1964, vol. 136, p. 290; Percus J.K., Lebowitz J.L. // Phys. Rev., 1966, vol. 144, p. 251. 9. Blum L. Simple electrolytes in the mean spherical approximation theoretical chemistry advances and perspectives. – In: Theoretical Chemistry Advances and Perspectives. Editors Eyring H., Henderson D.J. New York, Academic Press. 10. Onsager L. // J. Phys. Chem., 1980, vol. 63, p. 189. 11. Rosenfeld Y., Blum L. // J. Phys. Chem., 1985, vol. 89, p. 5149. 12. Rosenfeld Y., Blum L. // J. Chem. Phys., 1986, vol. 85, p. 1556. 13. Blum L., Rosenfeld Y. // J. Stat. Phys., 1991, vol. 63, p. 1177. 14. Blum L., Gruber Ch., Lebowitz J.L., Martin Ph.A. // Phys. Rev. Letters, 1982, vol. 48, p. 1769. 15. Wertheim M.S. // J. Stat. Phys., 1984, vol. 35, p. 19; 1984, vol. 42, p. 459, p. 477. 16. Wertheim M.S. // J. Chem. Phys., 1985, vol. 85, p. 2929; 1987, vol. 87, p. 7323; 1988, vol. 88, p. 1214. 17. Wertheim M.S. // J. Chem. Phys., 1971, vol. 55, p. 4291. 18. Blum L. // Chem. Phys. Letters, 1974, vol. 26, p. 200; J. Chem. Phys., 1974, vol. 61, p. 2129. 19. Adelman S.A., Deutch J.M. // J. Chem. Phys., 1974, vol. 60, p. 3935. 20. Harvey A.H. // J. Chem. Phys., 1991, vol. 95, p. 479. 21. Vericat F., Blum L. // J. Statistical Phys., 1980, vol. 22, p. 593. 22. Blum L., Wei D.Q. // J. Chem. Phys., 1987, vol. 87, p. 555. 23. Wei D.Q., Blum L. // J. Chem. Phys., 1987, vol. 87, p. 2999. 24. Wei D.Q., Blum L. // J. Chem. Phys., 1988, vol. 89, p. 1091. 25. Blum L., Torruella A.J. // J. Chem. Phys., 1972, vol. 56, p. 303; Blum L. // J. Chem. Phys., 1972, vol. 57, p. 1862; 1973, vol. 58, p. 3295. 26. Høye J.S., Stell G. // J. Chem. Phys., 1980, vol. 89, p. 461. 619 L.Blum Скейлінг у заряджених флюїдах: поза простими іонами Л.Блюм Фізичний факультет, університет Пуерто Ріко, Ріо П’єдрас, PR 00931–3343 Отримано 28 вересня 2001 р. Аналітичний розв’язок середньосферичного наближення для до- статньо загального класу взаємодій є завжди функцією редукова- ного набору скейлінгових матриць. Ми розширюємо цей резуль- тат на випадок систем з мультипольними взаємодіями. Ми пока- зуємо, що для іонно-дипольної суміші термодинамічні надлишко- ві функції є функціями цієї матриці. Результат для ентропії є S = −{kV /3π}(F [Γα])α∈χ , де F – алгебраїчний функціонал скейлінгових матриць незвідних представлень замикання Орнштейна-Церніке. Результат дійсний також і для довільних електростатичних мультипо- льних взаємодій. Ключові слова: кулонівські системи, середньосферичне наближення, ентропія, іонно-дипольні суміші PACS: 61.20.Gy 620