Ginzburg-Landau-Wilson Hamiltonian for a multi-component continuous system: a microscopic description

Recently we proposed the microscopic approach to the description of the phase behaviour and critical phenomena in binary fluid mixtures. It was based on the method of collective variables (CV) with a reference system. The approach allowed us to obtain the functional of the Ginzburg-LandauWilson...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2002
1. Verfasser: Patsahan, O.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2002
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/120661
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Ginzburg-Landau-Wilson Hamiltonian for a multi-component continuous system: a microscopic description / O.V. Patsahan // Condensed Matter Physics. — 2002. — Т. 5, № 3(31). — С. 413-428. — Бібліогр.: 29 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Recently we proposed the microscopic approach to the description of the phase behaviour and critical phenomena in binary fluid mixtures. It was based on the method of collective variables (CV) with a reference system. The approach allowed us to obtain the functional of the Ginzburg-LandauWilson (GLW) Hamiltonian expressed in terms of the collective variables (“density” variables). The corresponding set of collective variables included the variable connected with the order parameter. In this paper, based on the previous results, we construct the GLW Hamiltonian in the phase space of the “field” variables φˆ ~k (fluctuating fields) conjugate to the “density” variables. We apply the obtained GLW functional to the study of both the binary symmetrical mixture and the restricted primitive model. In the former case we consider the Gaussian approximation only and show that the obtained results are the same as those found previously using the CV method. In the latter case we calculate the phase diagram taking into account the powers of φˆ ~k higher than the second one