Structural study of liquid rare earth metals from charged hard sphere reference fluid

The present article deals with the investigation of structure factor, s(q) ; radial distribution function, g(r) and interatomic distance, r₁ of liquid rare earth metals, Nd, Dy, Ho, Er and Lu by adopting Charged Hard Sphere (CHS) reference fluid. To describe electron-ion interaction, our well est...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2002
Автори: Thakor, P.B., Gajjar, P.N., Jani, A.R.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2002
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120670
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Structural study of liquid rare earth metals from charged hard sphere reference fluid / P.B. Thakor, P.N. Gajjar, A.R. Jani // Condensed Matter Physics. — 2002. — Т. 5, № 3(31). — С. 493-501. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-120670
record_format dspace
spelling irk-123456789-1206702017-06-13T03:03:18Z Structural study of liquid rare earth metals from charged hard sphere reference fluid Thakor, P.B. Gajjar, P.N. Jani, A.R. The present article deals with the investigation of structure factor, s(q) ; radial distribution function, g(r) and interatomic distance, r₁ of liquid rare earth metals, Nd, Dy, Ho, Er and Lu by adopting Charged Hard Sphere (CHS) reference fluid. To describe electron-ion interaction, our well established model potential along with the dielectric function due to Taylor is used. Good agreement between present and experimental findings is concluded. В даній статті вивчаються структурний фактор s(q) , радіальна функція розподілу g(r) і міжатомна відстань r₁ рідкоземельних рідких металів Nd, Dy, Ho, Er і Lu на основі флюїду заряджених твердих сфер. Для опису взаємодії електрон-іон використовується наш модельний потенціал разом з діелектричною функцією Тейлора. Робиться висновок про добре узгодження отриманих результатів з експериментальними. 2002 Article Structural study of liquid rare earth metals from charged hard sphere reference fluid / P.B. Thakor, P.N. Gajjar, A.R. Jani // Condensed Matter Physics. — 2002. — Т. 5, № 3(31). — С. 493-501. — Бібліогр.: 18 назв. — англ. 1607-324X PACS: 71.15.H, 61.25.M DOI:10.5488/CMP.5.3.493 http://dspace.nbuv.gov.ua/handle/123456789/120670 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The present article deals with the investigation of structure factor, s(q) ; radial distribution function, g(r) and interatomic distance, r₁ of liquid rare earth metals, Nd, Dy, Ho, Er and Lu by adopting Charged Hard Sphere (CHS) reference fluid. To describe electron-ion interaction, our well established model potential along with the dielectric function due to Taylor is used. Good agreement between present and experimental findings is concluded.
format Article
author Thakor, P.B.
Gajjar, P.N.
Jani, A.R.
spellingShingle Thakor, P.B.
Gajjar, P.N.
Jani, A.R.
Structural study of liquid rare earth metals from charged hard sphere reference fluid
Condensed Matter Physics
author_facet Thakor, P.B.
Gajjar, P.N.
Jani, A.R.
author_sort Thakor, P.B.
title Structural study of liquid rare earth metals from charged hard sphere reference fluid
title_short Structural study of liquid rare earth metals from charged hard sphere reference fluid
title_full Structural study of liquid rare earth metals from charged hard sphere reference fluid
title_fullStr Structural study of liquid rare earth metals from charged hard sphere reference fluid
title_full_unstemmed Structural study of liquid rare earth metals from charged hard sphere reference fluid
title_sort structural study of liquid rare earth metals from charged hard sphere reference fluid
publisher Інститут фізики конденсованих систем НАН України
publishDate 2002
url http://dspace.nbuv.gov.ua/handle/123456789/120670
citation_txt Structural study of liquid rare earth metals from charged hard sphere reference fluid / P.B. Thakor, P.N. Gajjar, A.R. Jani // Condensed Matter Physics. — 2002. — Т. 5, № 3(31). — С. 493-501. — Бібліогр.: 18 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT thakorpb structuralstudyofliquidrareearthmetalsfromchargedhardspherereferencefluid
AT gajjarpn structuralstudyofliquidrareearthmetalsfromchargedhardspherereferencefluid
AT janiar structuralstudyofliquidrareearthmetalsfromchargedhardspherereferencefluid
first_indexed 2025-07-08T18:19:01Z
last_indexed 2025-07-08T18:19:01Z
_version_ 1837103833338085376
fulltext Condensed Matter Physics, 2002, Vol. 5, No. 3(31), pp. 493–501 Structural study of liquid rare earth metals from charged hard sphere reference fluid P.B.Thakor, P.N.Gajjar, A.R.Jani Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India Received August 27, 2001 The present article deals with the investigation of structure factor, s(q) ; radial distribution function, g(r) and interatomic distance, r1 of liquid rare earth metals, Nd, Dy, Ho, Er and Lu by adopting Charged Hard Sphere (CHS) reference fluid. To describe electron-ion interaction, our well estab- lished model potential along with the dielectric function due to Taylor is used. Good agreement between present and experimental findings is con- cluded. Key words: pseudopotential, structure factor, radial distribution function, rare earth metals PACS: 71.15.H, 61.25.M 1. Introduction The structure factor S(q), is one of the important properties to study the various electronic, magnetic, static and dynamic properties of a material, in liquid states, which is a measure of particle correlations in the reciprocal space. The charged hard sphere (CHS) model is very useful to evaluate the structure factor of metals in liq- uid state [1–6]. Such a system of CHS in a uniform background of electrons has been solved exactly in a mean spherical approximation by Palmer and Weeks [5]. According to CHS model, the reference system consists of Coulombically interacting positively charged point charges in a uniform background of conduction electrons. Though the CHS method has proved to be very useful for explaining structural prop- erties of liquid metals, the study of liquid rare earth metals using CHS is limited [3]. Gopala Rao and Bandyopadhyay [3] have reported the structure factor, S(q); radial distribution function, g(r); and interatomic distance, r1 of the nearest neighbour atoms for Nd, Dy, Ho, Er and Lu by employing CHS reference fluid with Ashcroft empty core model potential. They have fitted the input parameters like effective valency (Z), potential parameter (rc) and hard sphere diameter (σ) in such a way that a good agreement with experimental findings should be obtained. c© P.B.Thakor, P.N.Gajjar, A.R.Jani 493 P.B.Thakor, P.N.Gajjar, A.R.Jani The present paper deals with the structural studies of some liquid rare earth metals, which reports the structure factor, S(q); radial distribution function, g(r) and interatomic distance, r1 of the nearest neighbour atoms for Nd, Dy, Ho, Er and Lu. The important aspect of the present investigation is to make the computation free from any fitting procedure to reproduce correct experimental data as it was done by Gopala Rao and Bandyopadhyay [3]. Here, our well established single parametric local pseudopotential is used to represent the electron-ion interaction. The present model potential in real space is of the form [6–12] V (r) = { 0, r < rc, −(Ze2/r)[1 − exp(−r/rc)], r > rc . (1.1) The corresponding bare-ion form factor in the reciprocal space is given as [6–12] VB(q) = ( −4πZe2 Ωq2 ) [ cos(qrc) − { (qrc) exp(−1) 1 + q2r2 c } {sin(qrc) + (qrc) cos(qrc)} ] . (1.2) Here Z, Ω, q and rc are the valency, atomic volume, wave vector and the parameter of the potential, respectively. In the present investigations, the parameter of the potential is determined using [13], rc = 0.51(Z)−1/3Ra , (1.3) where Ra is the atomic radius. This model potential is the modified version of the Ashcroft’s empty core model. It is continuous in r space. Here we have introduced some repulsive part outside the core which vanishes faster than only Coulomb potential −Ze2/r as r → ∞. Moreover, it may be noted that the inclusion of this repulsive term outside the core makes the effective core smaller than the ionic radius of a free ion [6–12]. 2. Theory The CHS model was studied within the framework of a mean spherical approxi- mation inside the core and outside the core, a perturbation in the form of Coulomb interaction is assumed to act by Palmer and Weeks [5]. In the CHS approximation, the direct correlation function is given by [3,4,6] C0(r) =    A + B ( r σ ) + C ( r σ )2 + D ( r σ )3 + E ( r σ )5 , r < σ, −γ / ( r σ ) , r > σ. (2.1) The coefficients involved in equation (2.1) are given by, A = − (1 + 2η)2 (1 − η)4 + Q2 4(1 − η)2 − (1 + η)QK 12η − (5 + η2)2 60η , B = 6ηM2, C = K2 6 , D = (η 2 ) (A − K2U), E = ηK2 60 (2.2) 494 Structural study of liquid rare earth metals. . . with Q = (1 + 2η) (1 − η) [ 1 − { 1 + 2(1 − η)3K (1 + 2η)2 }1/2 ] , M = Q2 24η − (1 + 0.5η) (1 − η)2 , U = (1 + η − η2/5) 12η − (1 − η) Q 12ηK , γ = β (Ze)2 ε0σ , K = (24ηγ)1/2, η = (π 6 ) ρσ3. (2.3) Here, γ, K and η are the dimensionless variables, which represent the Coulomb interaction potential, the inverse screening length due to Debye and Huckel and packing fraction, respectively. Here, σ is the charged hard sphere diameter, Ze is the ionic charge, β = 1/kBT , kB is Boltzmann constant, T is absolute temperature of the system, ε0 is the dielectric constant of the medium. Since the electron background is uniform, its dielectric constant is unity. The static structure factor S0(q) of the reference system is related to its direct correlation function in the following form [3,4,6]: S0(q) = 1 [1 − ρC0(q)] . (2.4) The mathematical expression for ρC0(q) is given by [3,4,6] ρC0(q) = ( 24η q6 ) [ Aq3(sin q − q cos q) + Bq2 { 2q sin q − (q2 − 2) cos q − 2 } + Cq { (3q2 − 6) sin q − (q2 − 6) } + D { (4q2 − 24)q sin q − (q4 − 12q2 + 24) cos q + 24 } + E { 6(q4 − 20q2 + 120)q sin q − (q6 − 30q4 + 360q2 − 720) cos q − 720 } /q2 − γq4 cos q ] (2.5) Here q is expressed in units of σ−1. The effect of responding electrons on the ionic motion is taken into account by assuming a weak coupling between valence electrons and ions which is also the basis of a standard pseudopotential approach. Within a linear screening approximation, the structure factor of a liquid metal is given by [3,4,6] S(q) = S0(q) [ 1 + ρβV̄ (q)S0(q) ] (2.6) with V̄ (q) = V 2 B (q) φ(q) [ 1 ε(q) − 1 ] , (2.7) which is the attractive screening correlation to the direct ion-ion potential, φ(q) = 4πe2/q2 is the Fourier transform of bare Coulombic interaction between two electrons 495 P.B.Thakor, P.N.Gajjar, A.R.Jani and VB(q) is the bare ion pseudopotential. The modified dielectric function ε(q) has the following form ε(q) = 1 + [1 − f(q)] [εH(q) − 1] , (2.8) with the static Hartree dielectric function εH(q) represented by εH(q) = 1 + me2 2πh2kFY 2 [ 1 + (1 − Y 2) 2Y ln ∣ ∣ ∣ ∣ 1 + Y 1 − Y ∣ ∣ ∣ ∣ ] , (2.9) where m is the ionic mass, h the Planck’s constant, kF the Fermi wave vector, e is the electronic charge and Y = q/2kF . The local field correction f(q) due to Taylor [14] is used to incorporate the exchange and correlation among the conduction electrons in the dielectric screening f(q) = q2 4k2 F [ 1 + 0.1534 πkF ] . (2.10) The expression for the radial distribution function is given by [3,6] g (r) = 1 + ( 1 2π2ρr ) ∞ ∫ 0 q {S(q) − 1} sin (qr)dq. (2.11) Using this radial distribution function we obtain the interatomic distance, r1 of the nearest neighbour atoms. The interatomic distance r1 corresponds to the maximum peak of g(r) curve. 3. Results and discussion The constants and parameters used in the present computations of structure factor, S(q) and radial distribution function, g(r) for the liquid rare earth metals are tabulated in table 1. Figures 1–5 show the computed values of S(q) and g(r) of Nd, Dy, Ho, Er and Lu, respectively along with the experimental findings [15]. Table 1. Parameters and constants used in present calculation. Metal T (K) ρ (gm/cm3) Z η kF (Å−1) rc (Å) Nd 1473 6.78 1.5 0.40 1.0793 0.8113 Dy 1703 8.14 1.5 0.43 1.1025 0.7899 Ho 1753 8.25 1.5 0.43 1.1020 0.7868 Er 1793 8.37 1.5 0.44 1.1022 0.7828 Lu 1953 9.18 1.5 0.44 1.1197 0.7725 496 Structural study of liquid rare earth metals. . . Figure 1. Structure factor, S(q) and radial distribution function, g(r) for Nd at 1473 K. Figure 2. Structure factor, S(q) and radial distribution function, g(r) for Dy at 1703 K. Figure 3. Structure factor, S(q) and radial distribution function, g(r) for Ho at 1753 K. 497 P.B.Thakor, P.N.Gajjar, A.R.Jani Figure 4. Structure factor, S(q) and radial distribution function, g(r) for Er at 1793 K. Figure 5. Structure factor, S(q) and radial distribution function, g(r) for Lu at 1953 K. Table 2. Position of first and second peak in S(q) (Å−1) and interatomic distance (r1). Metal Peak positions in S(q) (Å−1) Interatomic distance r1(Å) First Second Present Expt.[15] Present Expt.[15] Present Other[3] Expt.[15] Nd 2.116 2.10 4.081 4.23 3.227 3.50 3.45 Dy 2.173 2.12 4.138 4.03 3.227 3.40 3.43 Ho 2.173 2.21 4.138 4.35 3.227 3.40 3.32 Er 2.173 2.24 4.138 4.38 3.227 3.50 3.28 Lu 2.210 2.28 4.195 4.43 3.175 3.40 3.22 498 Structural study of liquid rare earth metals. . . In table 2, we have compared the position of the first and the second peaks in S(q) with experimental results of Waseda and Miller [15]. The deviation of the presently generated results from experimental data at the first peaks of S(q) are of the order of 0.16 to 0.27. Similarly, for g(r) these deviations are of the order of 0.52 to 0.74. For all the five liquid rare earth metals, the magnitude of the first peak in S(q) and g(r) is slightly higher than the experimental data, but the position of the first and second peaks in S(q) is well estimated. The interatomic distance r1 of the nearest neighbour atoms is also investigat- ed and compared with other theoretical [3] as well as experimental findings [15] in table 2. The excellent qualitative agreement between present and experimental findings is obtained. Gopala Rao and Bandyopadhyay [3] have chosen Z, rc and σ in such a way that it generates satisfactory structural data. They have fitted these three parameters to obtain correct experimental predictions. However, the present investigation is free from such kind of a fitting procedure. In the previously reported study of liquid rare earth metals, the uncertainty in the data Z is observed. Delley et al. [16] have estimated Z = 1.3, Duthie and Pettifor [17] have estimated the value Z = 1.1 to 1.5. Waseda and Miller [15] have estimated Z = 1.33 to 2.09 for Lu. For Lu, Delley et al. [16] have suggested Z closer to two. While Johansson [18] have assumed Z = 3.0. Gopala Rao and Bandyopadhyay [3] have taken Z = 1.54 to 2.03 to obtain a better agreement with the experimental findings. Thus, instead of making an adjustment in Z, we have considered Z = 1.5 for all the five liquid rare earth metals and the uncertainty in the parameters is totally avoided, consistently. And finally we conclude that, though the present computation is free from any artificial fitting procedure to predict correct experimental data, it is capable of ex- plaining very good results for the structural data of liquid rare earth metals. Hence, the reported data are more meaningful and will provide a better source for further comparison either with theoretical or with experimental data. This confirms the applicability of our model potential and CHS method for predicting the structural studies of the liquid rare earth metals. 4. Acknowledgement The work is supported under the special assistance programme at the level of Departmental Research Support by the University Grants Commission, New Delhi, India. References 1. Lai S.K., Akinlade O., Tosi M.P. Thermodynamics and structure of liquid alkali metals from the charged-hard-sphere reference fluid. // Physical Review A, 1990, vol. 41, p. 5482–5490. 2. Akinlade O., Lai S.K., Tosi M.P. Thermodynamics and structure of liquid metals from the charged-hard-sphere reference fluid. // Physica B, 1990, vol. 167, p. 61–70. 499 P.B.Thakor, P.N.Gajjar, A.R.Jani 3. Gopal Rao R.V., Bandyopadhyay U. Structural studies of some rare earth metals through palmer-weeks charged hard sphere model approximation. // Indian J. Phys., 1991, vol. 65A, p. 286–292. 4. Singh H.B., Holz A. Structure factor of liquid alkali metals. // Physical Review A, 1983, vol. 28, p. 1108–1113. 5. Palmer R.G., Weeks J.D., Jr. Exact solution of the mean spherical model for charged hard spheres in a uniform neutralizing background. // Chem. Phys, 1973, vol. 58, p. 4171–4174. 6. Thakor P.B., Joshi Tejal R., Thakore B.Y., Gajjar P.N., Jani A.R. Structure factor and radial distribution function of alkali metals by charged hard sphere model. // Solid State Physics Universities Press, Indian, 1999, vol. 42, p. 281–282. 7. Thakor P.B., Gajjar P.N., Jani A.R. Thermodynamic properties of liquid alkali metals. // Condens. Matter Phys., 2001, vol. 4, No. 3(27), p. 473–480. 8. Gajjar P.N., Thakore B.Y., Jani A.R. Total crystal energy and heat of solution of alkali based binary alloys. // Acta Phys. Pol. A, 2001, vol. 99, p. 565–578. 9. Thakor P.B., Gajjar P.N., Jani A.R. Temperature dependence of thermodynamic prop- erties of liquid alkali metals. // Indian J. Pure & Appl. Phys., 2000, vol. 38, p. 811–814. 10. Gajjar P.N., Thakore B.Y., Luhar J.S., Jani A.R. Residual resistivity due to vacancies in alkali metals. // Acta Phys. Pol. A, 1994, vol. 86, p. 369–374. 11. Avte R.S., Gajjar P.N., Jani A.R. Contribution of a point defect to the electrical resistivity of some polyvalent metals. // Phys. stat. sol. (b), 1993, vol. 176, p. K59– K61. 12. Jani A.R., Gajjar P.N., Patel H.K. Susceptibility of some simple metals by local pseu- dopotentials. // Phys. stat. sol. (b), 1992, vol. 169, p. K105–K108. 13. Heine V., Weaire D. Solid State Physics. New York, Academic press, 1970, vol. 24, p. 419. 14. Taylor R. A simple, useful analytical form of the static electron gas dielectric function. // J. Phys. F: Metal Phys, 1978, vol. 8, p. 1699–1702. 15. Waseda Y., Miller W. A. A structural study of some liquid rare earth metals (Nd, Dy, Ho, Er and Lu). // Philosophical Magazine B, 1978, vol. 38, p. 21–24. 16. Delley B., Bech H., Kunzi H.U., Guntherodt H.J. Evidence for varying d-band occu- pancy across the trivalent rare earth series. // Phys. Rev. Lett, 1978, vol. 40, p. 193– 197. 17. Duthie J.C., Pettifor D.G. Correlation between d-band occupancy and crystal struc- ture in the rare earths. // Phys. Rev. Lett, 1977, vol. 38. p. 564–567. 18. Johansson B. The boiling points of the rare earth metals. // J. Phys. F, 1975, vol. 5, p. 1241–1247. 500 Structural study of liquid rare earth metals. . . ���������� ��� �������������������� ����������� ����� ���� !��"$#� ���� !����%�"$�&� '%��( ��)����*+"$,.-/�0�1�'% ���2�43+�� ���1�������������+ �*5��� 6�798:7<;>=�?A@ B(CD6�79E�79FHG�I'I'JK=�B(CML�79NO7 PKJKG'Q2=�R S2TOU VXWZY\[O]M^_WM^(U `�acb�WZYMd�eZYOe:f�WZgM^_WMh\ejick:U lA]OmMTO]Zg0k4eZn/ophDqr^_WM^ s�eMhAh\eAtvu0s�U d�w\TMeZxyeZY\z�{Z|\|2}_~O��iM��ocd�� eZYOeM^�iX� Tpd�U w �4�\�2���)���Z���D�������2�j�\���j��� �$��� s:d�eZTOU g4[_^peM^�^MU�Vv]ZVXmpeZ�'^Mqp[Mw�[_^MYvoAn/^�oAY�TO]Zg)k4eZn/^_�DY s(q) i_YOeXd�U eMhDqXTMe)k�oATOn_� � U w Y\�\lA�A�vd�U hAo g(r) UH` U � eM^_�D` TMe�VvU d2[_^peZTOq r1 Y�U d�n��\lMWZ`�WMhDqXTO]Xu�Y�U d�np]Xu�`�W�� ^peMhDU V$����iA 2¡XiA¢�£2iA¤�¥�UX¦X§�TMe��Z[OTv�DVvU�k�hD� ¨ dDo4lXeZYOw_d���WZTO]Xu�^MVXWZYMd�]Xu0[Mk0WZY�a ©�h\w)�D�\]O[_o)V_lXeOª\`��vd�U ¨_WMhZWZn/^MY\�DT\�«U �DT4Vv]Zn��DY�]O[_^_�DVcoMªX^Mqp[Mw)TMeZ¬­`��vd2WMhDqXTO]Zg �A�A^_WZT � U eMh�YOeAlM�D`�l�d�U WMhZWZn/^MY�]OmMTv�D�®k�oATOn � U ª\�°¯AWZgMhZ�DYOeja�±��ZtD]M^Mqp[Mw²Vv]�� [OTv�DVX�Dn'�\Y\��d2�ZtDY\W�oXlAx«�vd���WZTOTMw$�A^MY�]Z`�eZTO]Xu4Y\WAlpophDqr^peM^MU V l�WZn�[O�AWZY�]Z`�WZT\� ^peMhDqXTO]Z` ]ja ³j´�µ�¶O·2¸Z¹cºO´2·2¸\»�¼v½�¾A¿AÀ�Á�ÂO½�Â�Ã�¿AÄ\Å�Æ ÇXÈjÉv¾OÃHÊjË_ÌXëË�Ê�Ä\ÍZÎ�Ï(ÇOÌXÃ�ÂMÊ2É_Ê�ÇcÁ�Æ ÇXÈDÐXÄ\Ç Ï�Ë_Ä\ÌcÅ�Æ Ñ Ê�ÂOÒX½�ÂcÁ�Æ È�ËcÉpÊ�Æ Á�Ì_ÂOÒv¿AÓ(¿_ÈDÐXÄ\Æ�Ó(¿ZÃrÇXÈDÍ ÔZÕ'Ö ×�¼\Ø�Ù�Ú�Ù/ÛZÚÝÜ�ÉZÞ Ù�Ú ßDÛZÚÝà 501 502