The effect of hydrostatic pressure on transverse dielectric permeability of KH₂PO₄ crystals

Temperature dependences of transverse dielectric permeability of KH₂PO₄ crystals under different values of hydrostatic pressure have been investigated. Within the framework of a tunnelling mode model, the dipole interaction energy and the tunnelling energy are suggested to be determined using the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2002
Автори: Kedyulich, V.M., Slivka, A.G., Gerzanich, E.I., Guivan, A.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2002
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120688
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The effect of hydrostatic pressure on transverse dielectric permeability of KH₂PO₄ crystals / V.M. Kedyulich, A.G. Slivka, E.I. Gerzanich, A.M. Guivan // Condensed Matter Physics. — 2002. — Т. 5, № 4(32). — С. 761-767. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-120688
record_format dspace
spelling irk-123456789-1206882017-06-13T03:05:03Z The effect of hydrostatic pressure on transverse dielectric permeability of KH₂PO₄ crystals Kedyulich, V.M. Slivka, A.G. Gerzanich, E.I. Guivan, A.M. Temperature dependences of transverse dielectric permeability of KH₂PO₄ crystals under different values of hydrostatic pressure have been investigated. Within the framework of a tunnelling mode model, the dipole interaction energy and the tunnelling energy are suggested to be determined using the temperature position of the dielectric permeability kinking point. From the temperature dependences of the dielectric permeability εa(T) under various pressures, the pressure dependences of these values are derived. Досліджено температурні залежності поперечної діелектричної проникності кристала КН₂Р0₄ при різних величинах гідростатичного тиску. В рамках моделі тунельної моди запропоновано спосіб визначення енергії дипольної взаємодії та енергії тунелювання з використанням температурного положення точки перегину діелектричної проникності. За результатами експериментальних досліджень залежностей ε(Т) при різних тисках отримано баричні залежності вказаних величин. 2002 Article The effect of hydrostatic pressure on transverse dielectric permeability of KH₂PO₄ crystals / V.M. Kedyulich, A.G. Slivka, E.I. Gerzanich, A.M. Guivan // Condensed Matter Physics. — 2002. — Т. 5, № 4(32). — С. 761-767. — Бібліогр.: 13 назв. — англ. 1607-324X PACS: 77.80.Bh, 77.22.Ch, 77.84.Fa DOI:10.5488/CMP.5.4.761 http://dspace.nbuv.gov.ua/handle/123456789/120688 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Temperature dependences of transverse dielectric permeability of KH₂PO₄ crystals under different values of hydrostatic pressure have been investigated. Within the framework of a tunnelling mode model, the dipole interaction energy and the tunnelling energy are suggested to be determined using the temperature position of the dielectric permeability kinking point. From the temperature dependences of the dielectric permeability εa(T) under various pressures, the pressure dependences of these values are derived.
format Article
author Kedyulich, V.M.
Slivka, A.G.
Gerzanich, E.I.
Guivan, A.M.
spellingShingle Kedyulich, V.M.
Slivka, A.G.
Gerzanich, E.I.
Guivan, A.M.
The effect of hydrostatic pressure on transverse dielectric permeability of KH₂PO₄ crystals
Condensed Matter Physics
author_facet Kedyulich, V.M.
Slivka, A.G.
Gerzanich, E.I.
Guivan, A.M.
author_sort Kedyulich, V.M.
title The effect of hydrostatic pressure on transverse dielectric permeability of KH₂PO₄ crystals
title_short The effect of hydrostatic pressure on transverse dielectric permeability of KH₂PO₄ crystals
title_full The effect of hydrostatic pressure on transverse dielectric permeability of KH₂PO₄ crystals
title_fullStr The effect of hydrostatic pressure on transverse dielectric permeability of KH₂PO₄ crystals
title_full_unstemmed The effect of hydrostatic pressure on transverse dielectric permeability of KH₂PO₄ crystals
title_sort effect of hydrostatic pressure on transverse dielectric permeability of kh₂po₄ crystals
publisher Інститут фізики конденсованих систем НАН України
publishDate 2002
url http://dspace.nbuv.gov.ua/handle/123456789/120688
citation_txt The effect of hydrostatic pressure on transverse dielectric permeability of KH₂PO₄ crystals / V.M. Kedyulich, A.G. Slivka, E.I. Gerzanich, A.M. Guivan // Condensed Matter Physics. — 2002. — Т. 5, № 4(32). — С. 761-767. — Бібліогр.: 13 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT kedyulichvm theeffectofhydrostaticpressureontransversedielectricpermeabilityofkh2po4crystals
AT slivkaag theeffectofhydrostaticpressureontransversedielectricpermeabilityofkh2po4crystals
AT gerzanichei theeffectofhydrostaticpressureontransversedielectricpermeabilityofkh2po4crystals
AT guivanam theeffectofhydrostaticpressureontransversedielectricpermeabilityofkh2po4crystals
AT kedyulichvm effectofhydrostaticpressureontransversedielectricpermeabilityofkh2po4crystals
AT slivkaag effectofhydrostaticpressureontransversedielectricpermeabilityofkh2po4crystals
AT gerzanichei effectofhydrostaticpressureontransversedielectricpermeabilityofkh2po4crystals
AT guivanam effectofhydrostaticpressureontransversedielectricpermeabilityofkh2po4crystals
first_indexed 2025-07-08T18:24:27Z
last_indexed 2025-07-08T18:24:27Z
_version_ 1837104178856460288
fulltext Condensed Matter Physics, 2002, Vol. 5, No. 4(32), pp. 761–767 The effect of hydrostatic pressure on transverse dielectric permeability of KH2PO4 crystals V.M.Kedyulich, A.G.Slivka, E.I.Gerzanich, A.M.Guivan Uzhgorod National University, 32 Voloshin Str., 88000 Uzhgorod, Ukraine Received September 30, 2002 Temperature dependences of transverse dielectric permeability of KH2PO4 crystals under different values of hydrostatic pressure have been investigat- ed. Within the framework of a tunnelling mode model, the dipole interaction energy and the tunnelling energy are suggested to be determined using the temperature position of the dielectric permeability kinking point. From the temperature dependences of the dielectric permeability εa(T ) under vari- ous pressures, the pressure dependences of these values are derived. Key words: ferroelectrics, dielectric permeability, hydrostatic pressure PACS: 77.80.Bh, 77.22.Ch, 77.84.Fa 1. Introduction The first-order phase transition of the order-disorder type in KH2PO4 (KDP) crys- tals is related to proton ordering in hydrogen bonds lying in the ab plane of the tetragonal lattice structure [1]. Spontaneous polarization along the crystallograph- ic orientation c is caused by ion displacements normal to the plane, in which the hydrogen bonds lie. Thus, the structure of KDP crystal at the phase transition is changed both along the orientation of spontaneous polarization and normal to it. The studies of the behaviour of longitudinal dielectric permeability along the orientation of spontaneous polarization show that in the paraelectric phase the de- pendence εa(T ) obeys the Curie-Weiss law with the constant Cw = 2.91 · 103 K [2]. The temperature dependence of the dielectric permeability under atmospheric pressure with the orientation normal to Ps, was investigated in [3,4]. The εa(T ) de- pendence was observed to undergo a step at the phase transition temperature. It was shown [4] that from the studies of the transverse dielectric susceptibility one can obtain information on the main parameters of Blinc – de Gennes [5] microscopic model for this crystal: the values of the dipole interaction energy J(0) and tun- nelling energy Γ which at the atmospheric pressure for KDP crystals are 204 K and 185 K, respectively. Here we report the studies of the effect of hydrostatic pressure c© V.M.Kedyulich, A.G.Slivka, E.I.Gerzanich, A.M.Guivan 761 V.M.Kedyulich et al. on the transverse dielectric permeability of KDP crystals and the derived pressure dependences of the tunnelling energy and the dipole interaction energy. 2. Results The temperature dependence of dielectric permeability εa of KDP crystal under atmospheric pressure at the measuring field frequency 1 kHz is shown in figure 1. This dependence possesses three characteristic features: a step of dielectric perme- ability at the phase transition temperature Tc = 122 K, a maximum at the tem- perature Tmax = 130 K (see the insert to figure 1) and a kinking point of dielectric permeability at Tf = 172 K. The temperature dependences of transverse dielectric permeability under various hydrostatic pressure values are shown in figure 2. With the pressure increase, the εa(T ) dependence shifts to lower temperatures. The pres- sure dependences of the values Tc, Tmax, Tf are shown in figure 3. The pressure increase to 6.5 kbar causes a linear decrease of these temperatures with the coeffi- cients: ∂Tc/∂p = −4.8 K/kbar, ∂Tmax/∂p = −5.4 K/kbar, ∂Tf/∂p = −5.4 K/kbar. The existence of a maximum of dielectric permeability at T > Tc was also ob- served in other antiferroelectric crystals such as KMnF3, NH4H2AsO4 [6]. However, in NH4H2AsO4 crystals, the increase of the external pressure value causes the broad- ening of the temperature range between Tc and Tmax, while for KDP, the difference in the pressure coefficients of the phase transition temperature Tc and the temper- ature of maximal dielectric permeability Tmax causes the decrease of the Tmax − Tc difference with pressure. Figure 1. The temperature dependence of transverse dielectric permeability of KDP crystal under atmospheric pressure. 762 The effect of hydrostatic pressure on KH2PO4 Figure 2. The temperature dependences of transverse dielectric permeability of KDP crystal under various hydrostatic pressures. Figure 3. The pressure dependences of the Tc, Tmax, Tf values. 763 V.M.Kedyulich et al. 3. Discussion A relation, describing the temperature dependence of transverse dielectric sus- ceptibility for KDP-type crystals in the paraelectric phase was obtained in [4]: χa = Nµ2 2 Γ tanh (Γ/T ) 1 + J(0) 3Γ tanh (Γ/T ) , (1) where J(0) is the dipole interaction energy in the mean-field approximation, N is hydrogen bond concentration, µ2 is the dipole moment along the a-axis. Based on equation (1) and using the relationship between J(0), Γ and the phase transition temperature Tc tanh ( Γ Tc ) = Γ J(0) , (2) the authors of [4] suggested that the unknown values of J(0) and Γ can be determined using the experimental dependences of εa(T ). At T � Tc equation (1) can be given by χ−1 a = kT Nµ2 2 , (3) which permits the value of µ2 to be found from the slope of the experimental curve. But the nonlinear character of this dependence causes the ambiguity of the derived µ2 value. The highest accuracy can be achieved from the µ2 phase transition tem- perature. However, at high temperatures, the conductivity of the samples increases, which induces additional uncertainty to the determination. From the known value of µ2 and transverse dielectric susceptibility at the phase transition temperature χ−1 a (Tc) using a relationship [4] χ−1 a = 3 4 J(0) Nµ2 2 (4) the dipole interaction energy J(0) was derived. However, as shown in the insert in figure 1, the dependence εa(T ) has an anomalous character at Tmax > Tc, not being described by equation (1). Therefore, the value χ−1 a (Tc) and, hence, the dipole interaction energy J(0) are also derived with some approximation. The analysis of equation (1) shows that the dependence has a kink in the para- electric phase, being clearly revealed in the experimental curves. This feature of the temperature behaviour of the transverse dielectric permeability can be used for deriving J(0) and Γ energies in the simplest way. The position of the kinking point can be found from the condition ∂2χa/∂T 2 = 0: tanh ( Γ Tf ) = (3Tf − J(0))Γ 3Γ2 − J(0)Tf . (5) From equations (5) and (2), one can determine the unknown values of tunnelling energy and dipole interaction energy, using the temperatures of the phase transition 764 The effect of hydrostatic pressure on KH2PO4 Figure 4. The pressure dependences of tunnelling energy Γ and dipole interaction energy J(0). and the kinking point of εa(T ) dependence, which can be easily derived from the experimental data. The approach proposed to obtain the parameters of the Blinc – de Gennes theory for KDP crystals has a number of advantages. First, there is no necessity to use the εa(T ) dependences far from the transition temperature, where, besides the increase of the sample conductivity, high-temperature anomalies of the dielectric permeability can be observed [7,8]. Second, the knowledge of the dielectric permeability value at the transition temperature and the dipole moment value µ2 is not required. Third, the temperature positions of the phase transition and the kinking point of the εa(T ) plot are independent of the accuracy of determining the absolute value of dielectric permeability. Thus, based on the experimental studies of εa(T ) dependences, the values of tunnelling and dipole interaction energies were derived, their values at atmospheric pressure being J(0) = 207 K and Γ = 190 K, respectively, which are close to those derived in [4]. The pressure dependence of these values is shown in figure 4. The increase of the external hydrostatic pressure causes the decrease of both values with the coefficients ∂J(0)/∂p = −6.8 K/kbar, ∂Γ/∂p = −5.9 K/kbar. The values of the tunnelling energy and the dipole interaction energy depend on the distance between two potential minima along the hydrogen bonds, along which protons move. Since the pressure increase causes the decrease of this distance, the tunnelling energy value should increase and the dipole interaction energy should 765 V.M.Kedyulich et al. decrease [9]. It was expected that the pressure change of the tunnelling energy should essentially exceed the pressure change of the dipole interaction energy. However, Raman studies [10] have shown that the decrease of the dipole interaction energy with pressure is three times greater than the tunnelling energy increase. Such a behaviour of these parameters was related to the pressure-induced rotation of PO4- groups around the fourth-order axis and to the temperature change of the tunnelling energy [11]. As follows from figure 4, the pressure behaviour of the dipole interaction energy, deduced from transverse dielectric permeability studies, confirms the theory. How- ever, the tunnelling energy value decreases with pressure. This situation may be related to the unsatisfactory description of the experimental temperature behaviour of the transverse dielectric permeability by equation (1). The fact that the tem- perature dependence of the tunnelling energy has been neglected is very important as follows from [11]. Hence, further experimental studies of KDP-type crystals are required in order to elucidate the role of the hydrogen bond length in the phase transition mechanism as well as the role of piezoelectric effect and electrostriction, which is significant for the crystals of this group [12,13]. Having this in view, the experimental studies of the effect of hydrostatic as well as of uniaxial stresses in var- ious directions on the anisotropy of fundamental physical properties for KDP-type crystals are important indeed. 4. Conclusion From the studies of the temperature dependences of transverse dielectric per- meability in KDP crystals under various hydrostatic pressures, the pressure depen- dences of the phase transition temperature, the temperature of maximal dielectric permeability and the temperature of the of εa(T ) plot kinking point are derived. The increase of the hydrostatic pressure causes the decrease of these parameters. The difference of the pressure coefficients of the phase transition temperature and the temperature of maximal dielectric permeability causes the decrease of the dif- ference Tmax − Tc. The values of the tunnelling energy and the dipole interaction energy are suggested to be determined using the temperature position of the kinking point of the εa(T ) dependence. The calculation results show the decrease of the tun- nelling energy and of the dipole interaction energy with pressure, while the earlier investigations show the increase of Γ value with pressure [10]. This discrepancy is related to the difference in the theoretically calculated and experimental behaviour of the transverse dielectric permeability in the vicinity of the phase transition in the paraelectric phase as well as to the fact that the temperature dependence of the tunnelling energy has been neglected. 5. Acknowledgements The authors are grateful to Professor R.R.Levitskii for having involved us in the studies and for showing a permanent interest in this study. 766 The effect of hydrostatic pressure on KH2PO4 References 1. Nelmes R.J., Tun Z., Kuhs W.F. // Ferroelectrics, 1987, vol. 71, p. 125. 2. Samara G.A. // Ferroelectrics, 1973, vol. 5, No. 25. 3. Bush G. // Helv. Phys. Acta, 1938, vol. 11, p. 269. 4. Havlin S., Litov E., Uehling E.A. // Phys. Rev. B, 1974, vol. 9, No. 3. 5. Gennes P.G. // Sol. St. Commun., 1963, vol. 1, p. 138. 6. Gesi K., Okawa K. // JPSJ, 1984, vol. 53, No. 12. 7. Gridnew S.A., Kravchenko S.A. // Fiz. Tv. Tela, 2000, vol. 42, No. 11 (in Russian). 8. Lukach P.M., Guivan A.M. // Sci. Herald of Uzhgorod University, 2001, No. 10 (in Ukrainian). 9. Samara G.A. // Phys. Rev. Lett., 1971, vol. 27, No. 103 10. Peersy P.S. // Phys. Rev. B, 1976, vol. 13, p. 3945 11. Nelmes R.J. // Ferroelectrics, 1984, vol. 53, p. 207. 12. Stasyuk I.V., Levitskii R.R., Moina A.P., Lisnii B.M. // Ferroelectrics, 2001, vol. 254, p. 213. 13. Stasyuk I.V., Levitskii R.R., Zachek I.R., Duda A.S. // Condens. Matter Phys., 2001, vol. 4, No. 3(27), p. 553. ��������� �� ��������������������� ����������! ��"���"���"#���#����� ��$#��%#��&���������� '���������������$����()���������������*�'+-, 2 .�/ 4 021435146�798;:-<�=�>@?�AB14CD1FE�<�=�GIH�J�?�AB14K*14CL7"M�N9J@O�=�>@?QP�143514CSR�T�GUJ@O VXW�Y[ZU\XZ^]I_a`Qbdc!e;f�g!h!i ZUf�g�jU`Qfac!e%k�fai lQm!\X_ac�nom�nqprXrasXsXs VXW�Y[ZU\XZ^]�pdltkdjIuFvIZ�j!ZUwxc!f�gypdz!{ |%}X~I�9���9�!���9������~U�y�9�X�-�y�9�I��~�� ��Z!_ojUi ]&W�m!f^Z�nom!����m!\ag�nDk�\&fai[�Qg�j!mQW�f^Z!_on�i���ZU��m!\Xma��f^Za�D]�i m�j!m!bSn�\&ca��f^Za�^�X\XZy�fac!bdf^Z!_on�iLbd\&ca_ondg�jXg���� 2 �&� 4 �X\&c�\&i ��facQ��lQm�jUca��c!f�gQ��YSi ]�\XZ!_ondg�n�ca��f^ZUY[Z�n�ca_X�bSkQutv�\ag!��b�gQ����Z^]Im�jUiLnDk�f^m�jU`Qf^Za�^��Z^]�c��Qg!�X\XZU��ZUf^ZUlog!f^Z�_a��Z!_ai �xl^c���f�ga�om!fX�f��%m!f^m!\&YSi �o]�c!��Z�jU`Qf^Za�alo�Qga�X��Z^]�i �dndg;m!f^m!\&YSi �onDk�f^m�jU��log!faf��;�%l^c!bDZU\&ca_ondg!fX�f��X�Bnom!����m!\ag�nDk�\&f^ZUY[Z���Z�j!Z^W�m!faf��2noZ!��bdc���m!\Xm!YSc!fokx]�i m�j!m!bSn�\&ca��f^Za�I�X\XZy�fac!bdf^Z!_on�i u� Ig¡\Xm��dkdjU`¢ndg�ndg!��c m!bD_a��m!\&c!��m!fondg�jU`QfacQ�£]IZ!_ojUi ]&W�m!fa`��Qg�j!mQW��f^Z!_onom!e ε(T ) �X\&c�\&i ��facQ�@n�ca_ab�gQ��Z�n�\&c!�@g!f^Z��Xg!\&ca��fai¤�Qg�j!mQW�f^Z!_on�iql^b�g��Qg!facQ�lQm�jUca��c!f&u ¥y¦�§�¨a©Iª!«t¬a¦I©IªX­�®a¯�°�±S²&°!³q´!°oµ9°�¶Q³L·9¸!¶t¸&¹tº�» °oµ9°�¶Q³L·9¸9¼�²X½�¾^·�´a²X¸!¶t²X» ¯a³¢¿�¹±S» ºI·�´!¯a³¢½a³¢¸9¼�²X¸!À2³¢¸U¯�¶ Á!Â"Ã�Ä�®XÅXÅ�ÆÈÇUÉXÆÈÊ�Ë!¹9ÅXÅ�Æ ÌXÌyÆÎÍ�Ë!¹IÅXÅ�ÆÈÇaÏUÆÈÐ^Ñ 767 768