The effect of isovalent substitutions and dopants of 3d-metals on the properties of ferroelectricssemiconductors

Electrophysical properties and microstructure of PTCR ceramics of the system (Ba,Ca,Sr,Y)TiO3 + y%Mn have been investigated. It has been shown that manganese ions increase the potential barrier at grain boundaries and form a high-resistance outer layer in (Ba,Ca,Sr,Y)TiO₃ ceramics. The resistance...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автори: V'yunov, O.I., Kovalenko, L.L., Belous, A.G.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2003
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120701
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The effect of isovalent substitutions and dopants of 3d-metals on the properties of ferroelectricssemiconductors / O.I. V'yunov, L.L. Kovalenko, A.G. Belous // Condensed Matter Physics. — 2003. — Т. 6, № 2(34). — С. 213-220. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-120701
record_format dspace
spelling irk-123456789-1207012017-06-13T03:06:05Z The effect of isovalent substitutions and dopants of 3d-metals on the properties of ferroelectricssemiconductors V'yunov, O.I. Kovalenko, L.L. Belous, A.G. Electrophysical properties and microstructure of PTCR ceramics of the system (Ba,Ca,Sr,Y)TiO3 + y%Mn have been investigated. It has been shown that manganese ions increase the potential barrier at grain boundaries and form a high-resistance outer layer in (Ba,Ca,Sr,Y)TiO₃ ceramics. The resistance of grains, outer layers and grain boundaries, the values of temperature coefficient of resistance as well as the varistor effect as a function of manganese content of PTCR materials have been investigated. Метою даної роботи було вивчення впливу йонів мангану на властивості областей ПТКО кераміки на основі (Ba,Ca,Sr,Y)TiO₃, що відрізняються за електричними властивостями. Було знайдено, що ріст вмісту мангану в кераміці на основі титанату барію збільшує опір границь і зовнішніх шарів зерен, але практично не змiнює опору зерен; при цьому потенціальний бар’єр на границях зерен зростає. Проведені дослідження ПТКО кераміки на основі титанату барію в широкому частотному і температурному інтервалах дозволяють стверджувати, що йони мангану знаходяться переважно на границях зерен і слабо впливають на опір зерен. Такий розподіл домішки мангану суттєво покращує властивості ПТКО матеріалів. 2003 Article The effect of isovalent substitutions and dopants of 3d-metals on the properties of ferroelectricssemiconductors / O.I. V'yunov, L.L. Kovalenko, A.G. Belous // Condensed Matter Physics. — 2003. — Т. 6, № 2(34). — С. 213-220. — Бібліогр.: 14 назв. — англ. 1607-324X PACS: 61.66.Fn, 77.80.Bh, 78.40.Fy DOI:10.5488/CMP.6.2.213 http://dspace.nbuv.gov.ua/handle/123456789/120701 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Electrophysical properties and microstructure of PTCR ceramics of the system (Ba,Ca,Sr,Y)TiO3 + y%Mn have been investigated. It has been shown that manganese ions increase the potential barrier at grain boundaries and form a high-resistance outer layer in (Ba,Ca,Sr,Y)TiO₃ ceramics. The resistance of grains, outer layers and grain boundaries, the values of temperature coefficient of resistance as well as the varistor effect as a function of manganese content of PTCR materials have been investigated.
format Article
author V'yunov, O.I.
Kovalenko, L.L.
Belous, A.G.
spellingShingle V'yunov, O.I.
Kovalenko, L.L.
Belous, A.G.
The effect of isovalent substitutions and dopants of 3d-metals on the properties of ferroelectricssemiconductors
Condensed Matter Physics
author_facet V'yunov, O.I.
Kovalenko, L.L.
Belous, A.G.
author_sort V'yunov, O.I.
title The effect of isovalent substitutions and dopants of 3d-metals on the properties of ferroelectricssemiconductors
title_short The effect of isovalent substitutions and dopants of 3d-metals on the properties of ferroelectricssemiconductors
title_full The effect of isovalent substitutions and dopants of 3d-metals on the properties of ferroelectricssemiconductors
title_fullStr The effect of isovalent substitutions and dopants of 3d-metals on the properties of ferroelectricssemiconductors
title_full_unstemmed The effect of isovalent substitutions and dopants of 3d-metals on the properties of ferroelectricssemiconductors
title_sort effect of isovalent substitutions and dopants of 3d-metals on the properties of ferroelectricssemiconductors
publisher Інститут фізики конденсованих систем НАН України
publishDate 2003
url http://dspace.nbuv.gov.ua/handle/123456789/120701
citation_txt The effect of isovalent substitutions and dopants of 3d-metals on the properties of ferroelectricssemiconductors / O.I. V'yunov, L.L. Kovalenko, A.G. Belous // Condensed Matter Physics. — 2003. — Т. 6, № 2(34). — С. 213-220. — Бібліогр.: 14 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT vyunovoi theeffectofisovalentsubstitutionsanddopantsof3dmetalsonthepropertiesofferroelectricssemiconductors
AT kovalenkoll theeffectofisovalentsubstitutionsanddopantsof3dmetalsonthepropertiesofferroelectricssemiconductors
AT belousag theeffectofisovalentsubstitutionsanddopantsof3dmetalsonthepropertiesofferroelectricssemiconductors
AT vyunovoi effectofisovalentsubstitutionsanddopantsof3dmetalsonthepropertiesofferroelectricssemiconductors
AT kovalenkoll effectofisovalentsubstitutionsanddopantsof3dmetalsonthepropertiesofferroelectricssemiconductors
AT belousag effectofisovalentsubstitutionsanddopantsof3dmetalsonthepropertiesofferroelectricssemiconductors
first_indexed 2025-07-08T18:25:57Z
last_indexed 2025-07-08T18:25:57Z
_version_ 1837104270309064704
fulltext Condensed Matter Physics, 2003, Vol. 6, No. 2(34), pp. 213–220 The effect of isovalent substitutions and dopants of 3d-metals on the properties of ferroelectrics- semiconductors O.I.V’yunov∗, L.L.Kovalenko, A.G.Belous V.I.Vernadskii Institute of General and Inorganic Chemistry 32/34 Palladina Ave., 03680 Kyiv-142, Ukraine Received September 2, 2002 Electrophysical properties and microstructure of PTCR ceramics of the sys- tem (Ba,Ca,Sr,Y)TiO3 + y%Mn have been investigated. It has been shown that manganese ions increase the potential barrier at grain boundaries and form a high-resistance outer layer in (Ba,Ca,Sr,Y)TiO3 ceramics. The re- sistance of grains, outer layers and grain boundaries, the values of temper- ature coefficient of resistance as well as the varistor effect as a function of manganese content of PTCR materials have been investigated. Key words: PTCR, manganese dopant, varistor effect, microstructure, potential barrier, complex impedance PACS: 61.66.Fn, 77.80.Bh, 78.40.Fy 1. Introduction Positive temperature coefficient of resistance (PTCR) occurs in ferroelectric semiconducting ceramics based on doped barium titanate near Curie point due to the formation of potential barriers at grain boundaries [1]. Therefore, PTCR ce- ramics are synthesized in the conditions at which semiconducting grains and high- resistance grain boundaries are formed. In particular, this is achieved when yttrium ions are partially substituted for barium ions and grain boundaries oxidized dur- ing sintering of ceramics in the air. Complex impedance (Z∗) and complex electric modulus (M∗) analysis in a wide frequency range showed the presence of semicon- ducting grains, high-resistance grain boundaries and outer layers between grains and grain boundaries in PTCR materials. These areas of PTCR ceramics are electrically non-uniform and can be represented by an equivalent circuit, which includes three parallel RC-elements connected in series [2–4]. The low magnitude of resistivity change in the PTCR region, viz. ratio of maximum (ρmax) to minimum (ρmin) resis- tivity, and large varistor effect, viz. reduction of resistivity under external electric ∗E-mail: vyunov@ionc.kar.net c© O.I.V’yunov, L.L.Kovalenko, A.G.Belous 213 O.I.V’yunov, L.L.Kovalenko, A.G.Belous field, are the basic difficulties in the use of barium-titanate-based PTCR materials in the devices working at high strengths of electric field. The magnitude of varistor effect can be estimated from the dependence of normalized resistivity ρE/ρ0, where ρE and ρ0 are resistivity of the sample at zero and nonzero voltage, on the electric field strength (E). Earlier investigations of PTCR barium titanate [5] showed that the magnitude of varistor effect correlates with the average grain size of ceramics, namely, the varistor effect is smaller in fine-grained ceramics. Both average grain size and the varistor effect decrease at partial substitution of calcium and strontium for barium in PTCR barium titanate (Ba,Ca,Sr,Y)TiO3. The magnitude of resistivity change in this case remains unchanged. Besides, the partial isovalent substitution in the barium site of barium titanate shifts the Curie point towards low-temperature range, and this expands the area of application of PTCR-materials. However, the low magnitude of resistivity change in PTCR area does not permit to utilize the above materials at high strengths of the electric field. The decrease in varistor effect and the increase in the magnitude of resistivity change are also attributed to the increase in the resistance of grain boundaries [6,7]. In particular, this occurs when the synthesized materials are doped with acceptors (for example, manganese) [8]. High-resistance grain boundaries in manganese-doped PTCR materials are formed due to redox transformations of manganese oxides in the same temperature range in which redox processes, accompanied with the formation of trivalent titanium, pro- ceed [9]. However, the information concerning the distribution of manganese dopant in a polycrystalline material is scantily presented in the literature. This does not permit to explain the formation mechanisms of PTCR effect, as well as to control the properties of the ceramics based on barium titanate with manganese dopant. Therefore, the aim of this work was to study the distribution of manganese ions in (Ba,Ca,Sr,Y)TiO3 ceramics and its effect on the properties of grains, outer grain layers and grain boundaries of PTCR ceramics. 2. Experimental Extra-pure BaCO3, CaCO3, SrCO3, TiO2, Y2O3, SiO2, MnSO4 and water solu- tion of ammonia were used as starting reagents. Powders were ball-milled in agate mortar. In order to reduce the pollution of mixed powders during the milling, the working surfaces of crushing cylinders were covered with vacuum rubber. Uniform distribution of manganese dopant was ensured by its precipitation from solutions. Electrophysical properties of samples sintered at 1340–1360 ◦C have been investi- gated. The grain sizes in the ceramics were determined using X-ray microanalyser JCXA Superprobe 733 (JEOL, Japan). Aluminium electrodes were fabricated by burning in Al paste. Electrical properties of the ceramics were studied at direct and alternating current. Impedance analyzer PGSTAT–30 (Solartron) was used for mea- surements in the frequency range 100 Hz – 1 MHz, and BM–560 Q-meter was used for measurements in the frequency range 50 kHz – 35 MHz. Equivalent circuit and values of its components were determined using Frequency Response Analyzer 4.7 PC program. 214 The effect of isovalent substitutions and dopants of 3d-metals (a) (b) (c) (d) Figure 1. Microstructure of PTCR ceramics in (Ba,Ca,Sr,Y)TiO3 + y mol.% Mn system: y = 0 (a), 0.002 (b), 0.006 (c), 0.01 (d), ×1000. 3. Results and discussion The average grain size of PTCR ceramics of the system (Ba,Ca,Sr,Y)TiO3 does not change with manganese content (figure 1). The temperature dependence of re- sistivity of PTCR ceramics can be schematically divided into 3 ranges (figure 2). Range I extends from room to phase transition temperature and is characterized by relatively low resistivity which decreases with temperature. Range II lies above the phase transition temperature where a rapid growth of resistivity is observed (PTCR effect). Range III exists at a high temperature and is characterized by high resistivity which decreases with temperature. When the ceramics are doped with manganese, the magnitude of resistivity change in PTCR area increases (see figure 2), and the varistor effect essentially decreases (figure 3). On the basis of the above fact it may be assumed that the potential barrier at grain boundaries increases with manganese content. Figure 2. Resistivity of PTCR ceram- ics of (Ba,Ca,Sr,Y)TiO3 +y mol.% Mn system versus temperature; y = 0 (1), 0.002 (2), 0.006 (3), 0.01 (4), 0.02 (5), 0.03 (6). Figure 3. Normalized resistivity (lg ρE/ρ0) of PTCR ceramics of (Ba,Ca,Sr,Y)TiO3 + y mol.% Mn system versus external electric field; y = 0 (1), 0.002 (2), 0.006 (3), 0.01 (4), Tmeas. = 20 ◦C. 215 O.I.V’yunov, L.L.Kovalenko, A.G.Belous Figure 4. Imaginary components of complex impedance Z ′′ and electric modulus M ′′ of PTCR ceramics of (Ba,Ca,Sr,Y)TiO3 (a, b) and (Ba,Ca,Sr,Y)TiO3 + 0.01 mol.% Mn systems (c, d) versus frequency at various temperatures. The results of frequency investigations of the PTCR ceramics can be analyzed as four types of dependences: of complex impedance (Z∗), complex admittance (Y ∗), complex permittivity (ε∗) and complex electric modulus (M ∗). The complex quan- tities are interrelated: M ∗ = 1/ε∗ = jωCoZ ∗ = jωCo(1/Y ∗) (where j = √ −1) For an analysis, the results of investigations were presented as frequency dependences of the imaginary components of complex impedance Z ′′ and complex electric modulus M ′′, which for a parallel RC element are described by the equations [2–4, 10, 11]: Z ′′ = R · ωRC 1 + (ωRC)2 , M ′′ = ε0 C · ωRC 1 + (ωRC)2 , (1) where ω = 2πf is angular frequency (f denote frequency in Hz) and ε0 is the permittivity of free space (8.854 · 10−14 F · cm−1). From equations (1) it follows that: ωmax = 1 RC , Z ′′ max = R 2 , M ′′ max = ε0 2C . (2) Equations (2) show that the shift of the peaks Z ′′ max and M ′′ max in frequency (ωmax) is associated with a change in the values of both capacity and resistance in the corresponding RC element of the equivalent circuit. The Z ′′ max value is sensitive to the change in the resistance, and the M ′′ max value is affected by the capacity. Figure 4 shows frequency dependences of Z ′′ and M ′′ of samples of the systems (Ba,Ca,Sr,Y)TiO3 and (Ba,Ca,Sr,Y)TiO3 + y mol.% Mn, investigated at various 216 The effect of isovalent substitutions and dopants of 3d-metals Figure 5. Resistance of grain (1), outer layer (2) and grain boundary (3) of PTCR ceramics of the (Ba,Ca,Sr,Y)TiO3 (a) and (Ba,Ca,Sr,Y)TiO3 + 0.01 mol.% Mn systems (b) versus temperature. temperatures. The plot of Z ′′(f ) exhibits one peak, and the plot of M ′′(f ) exhibits two peaks: one in the medium-frequency range (104 – 105 Hz) and the other in the high-frequency ( > 108 Hz) range. The positions of Z ′′ max and M ′′ max do not coincide in frequency. This may be accounted for by the fact that the behavior of these maxima is affected by different electroactive ceramic regions. The change in the value and position of the maximum in the plot of Z ′′(f ) is associated with the change in the electrophysical properties of the grain boundary, and that of M ′′(f ) at 104 – 105 Hz and at > 108 Hz is associated with the change in the electrophysical properties of the grain outer layer and the grain, respectively [2–4]. Figure 4 shows that the frequency of Z ′′ max in (Ba,Ca,Sr,Y)TiO3 ceramics decreases and the value of Z ′′ max increases with the increase of temperature. This is due, according to equations (2), to an increase in the resistance of the grain boundary. The positions of M ′′ max in the medium-frequency range slightly shifts with the increase of temperature, and the value of M ′′ max essentially increases. This is due, according to equation (2), to a decrease in the capacitance and an increase in the resistance of the outer layer of the grain. A calculation carried out on the basis of our experimental data corroborated the above conclusion. Temperature dependences of the resistance of electrically different areas of the PTCR ceramics (Ba,Ca,Sr,Y)TiO3 and (Ba,Ca,Sr,Y)TiO3 + 0.01 mol.% Mn are shown in figure 5. The variation of the resistance of the outer layer with temperature is similar to that of the grain boundary. Hence, the PTCR effect in (Ba,Ca,Sr,Y)TiO3 ceramics without manganese dopant occurs due to a change in electrophysical prop- erties of the grain boundaries and the outer layers. Temperature dependences of capacitances of (Ba,Ca,Sr,Y)TiO3 PTCR ceramics are shown in figure 6. The capacitance of the grain boundary of the PTCR ceramic slightly changes with temperature, and the capacitance of the outer layer varies with temperature by the Curie-Weiss law (figure 6a). The capacitance of the grain boundary and the outer layer decreases in manganese-doped ceramics (figure 6b). The results of investigations of PTCR (Ba,Ca,Sr,Y)TiO3 ceramics properties at room temperature as a function of manganese content are shown in figure 7. As is 217 O.I.V’yunov, L.L.Kovalenko, A.G.Belous Figure 6. Inverse capacitance of grain boundary (1) and outer layer (2) of the systems (Ba,Ca,Sr,Y)TiO3 (a) and (Ba,Ca,Sr,Y)TiO3+0.01 mol.% Mn (b) versus temperature. evident from the data presented, the grain boundary resistance increases, whereas the grain resistance remains practically unchanged with the increasing manganese content. This is due to the manganese being not incorporated into the whole bulk of PTCR barium titanate grain in the concentration range under study. To ascertain the reason of the increase in the multiplicity of resistance change in the PTCR region of ceramics as a function of manganese content, the magnitude of the potential barrier at the grain boundary has been calculated. The variation of the resistance in the temperature range ca. 17–50 ◦C (see figure 2, range I) and ca. 300–500 ◦C (see figure 2, range III) is described by the equations [1, 12]: ρS = ρI 0 · e E I a kT , ρd = ρIII 0 · e E III a kT , (3) where ρ0 is a constant for material [13]; Ea is the activation energy of conductivity; k is Boltzmann constant (1.38 · 10−23 J/K = 8.62 · 10−5 eV/K). Figure 7. Resistance of grain (1) and grain boundary (2) of PTCR ceramics of (Ba,Ca,Sr,Y)TiO3 + y mol.% Mn system versus Mn content; Tmeas. = 20 ◦C. Figure 8. Potential barrier at grain boundaries (Φ0) of PTCR ceramics of (Ba,Ca,Sr,Y)TiO3 + y mol.% Mn sys- tem versus temperature; y = 0 (1), 0.01 (2). 218 The effect of isovalent substitutions and dopants of 3d-metals Table 1. The effect of manganese content on the characteristics of temperature dependence of the resistance of PTCR ceramics (Ba,Ca,Sr,Y)TiO3 . Manganese Range I Range II Range III content, mol.% RI 0 , Ω EI a , eV nD · b2, cm−1 RIII 0 , Ω EIII a , eV 0 4.2 0.04 3.2·108 2000 0.13 0.002 4.7 0.04 3.6·108 800 0.22 0.006 4.8 0.04 4.2·108 120 0.36 0.01 5.2 0.04 5.4·108 36 0.44 0.02 5.8 0.04 5.5·108 0.7 0.69 0.03 8.2 0.04 5.8·108 0.5 0.72 The variation of the resistance in the temperature range ca. 100–300 ◦C, where a PTCR effect manifests itself, is usually described in terms of the Heywang model [1]: ρ = α · ρS · e Φ0(T ) kT , (4) where α is the geometric factor; Φ0(T) is the height of the potential barrier at the grain boundary: Φ0(T ) = e2 · nD · b2 2 · εi(T ) · ε0 , (5) e is the electron charge; nD is the electron volume concentration; b is the potential barrier thickness (2b = nS/nD, where nS is surface concentration of acceptor states); εi(T ) is grain permittivity which varies in ferroelectrics by the Curie-Weiss law: εi(T ) = C/T − Θ (where C is Curie constant and Θ is Curie temperature). From equations (3) and (4) we can get: ρ = α · ρ0 · e E I 0 kT · exp e2 · nD · b2(T − Θ) 2 · ε0 · C · kT . (6) The results of calculations for (Ba,Ca,Sr,Y)TiO3 ceramics according to equations (3) and (6) show that in the temperature range I the resistance remains unchanged and conductivity activation energy EI a decreases with the increasing manganese con- tent, whereas in the temperature range III the resistance decreases and conductivity activation energy increases (table 1). The magnitude of the potential barrier at the grain boundaries of PTCR barium titanate, which accounts for the increase in the multiplicity of resistance change in the PTCR region, were calculated using equa- tion 5 (figure 8) and agreed with the literature data [14]. Thus, the investigations of the manganese-doped PTCR ceramics based on (Ba,Ca,Sr,Y)TiO3 carried out by us over a wide frequency and temperature range showed that the manganese content slightly affects the grain resistance. Manganese ions are mainly at the grain boundaries and in the grain outer layer and act as acceptors. This greatly improves the properties of PTCR materials: the multiplic- ity of the resistance change in the PTCR region increases, and the varistor effect decreases. 219 O.I.V’yunov, L.L.Kovalenko, A.G.Belous References 1. Heywang W. // J. Am. Ceram. Soc., 1964, vol. 47, No. 10, p. 484–490. 2. Sinclair D.C., Morrison F.D., West A.R. // Internat. Ceram., 2000, vol. 2, p. 33–37. 3. Morrison F.D., Sinclair D.C., West A.R. // J. Am. Ceram. Soc., 2001, vol. 84, No. 2, p. 474–476. 4. Morrison F.D., Sinclair D.C., West A.R. // J. Am. Ceram. Soc., 2001, vol. 84, No. 3, p. 531–538. 5. Belous A.G., Kolodyazhnyi T.V., Yanchevskii O.Z. // Ukr. Chem. Journal., 1995, vol. 61, No. 8, p. 86–89 (in Russian). 6. Pavlov A.N., Rayevskii I.P. // J. Tech. Physics, 1997, vol. 67, No. 12, p. 21–25 (in Russian). 7. Gaosheng L., Roseman R.D. // J. Materials Science Letters, 1999, vol. 18, p. 1875– 1878. 8. Yanchevskii O.Z., V’yunov O.I., Belous A.G., Vasiliev A.D. – In: Digest “Electron Microscopy and Materials Strength”. Kyiv, 1997, p. 106–113 (in Russian). 9. Kostikov Yu.D., Leikina B.B. // Inorg. Materials, 1990, vol. 26, No. 4, p. 884–886. 10. Jonker G.H. // Solid-State Electron., 1964, vol. 7, p. 895–903. 11. Dutta P.K., Alim M.A. // Jpn. J. Appl. Phys., 1996, vol. 35, No. 12A, p. 6145–6152. 12. Heywang W. // J. Mater. Sci., 1971, No. 6, p. 1214–1226. 13. Wang D.Y., Umeya K. // J. Am. Ceram. Soc., 1990, vol. 73, No. 3, p. 669–677. 14. Hari N., Padmini P., Kutty T. // J. Mater. Sci., 1997, vol. 8, p. 15–22. Вплив ізовалентних заміщень і домішок 3d-металів на властивості сегнетоелектриків-напівпровідників О.І.В’юнов, Л.Л.Коваленко, А.Г.Білоус Інститут загальної та неорганічної хімії ім. В.І.Вернадського 03680 Київ-142, просп. Палладіна, 32/34 Отримано 2 вересня 2002 р. Метою даної роботи було вивчення впливу йонів мангану на власти- вості областей ПТКО кераміки на основі (Ba,Ca,Sr,Y)TiO3, що відріз- няються за електричними властивостями. Було знайдено, що ріст вмісту мангану в кераміці на основі титанату барію збільшує опір границь і зовнішніх шарів зерен, але практично не змiнює опору зерен; при цьому потенціальний бар’єр на границях зерен зрос- тає. Проведені дослідження ПТКО кераміки на основі титанату барію в широкому частотному і температурному інтервалах дозволяють стверджувати, що йони мангану знаходяться переважно на грани- цях зерен і слабо впливають на опір зерен. Такий розподіл домішки мангану суттєво покращує властивості ПТКО матеріалів. Ключові слова: ПТКО, домішка мангану, варисторний ефект, мікроструктура, потенціальний бар’єр, комплексний імпеданс PACS: 61.66.Fn, 77.80.Bh, 78.40.Fy 220