Temperature and pressure effect on the anisotropy of dielectric permeability in KDP and DKDP crystals

Temperature dependences of longitudinal and transverse dielectric permeability of KDP and DKDP crystals are studied at different values of hydrostatic pressure in order to determine the pressure behaviour of the isotropic point for these crystals. The isotropic point temperature in KDP crystals...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автори: Kedyulich, V.M., Slivka, A.G., Gerzanich, E.I., Guivan, A.M., Lukach, P.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2003
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120714
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Temperature and pressure effect on the anisotropy of dielectric permeability in KDP and DKDP crystals / V.M. Kedyulich, A.G. Slivka, E.I. Gerzanich, A.M. Guivan, P.M. Lukach // Condensed Matter Physics. — 2003. — Т. 6, № 2(34). — С. 271-280. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-120714
record_format dspace
spelling irk-123456789-1207142017-06-13T03:06:42Z Temperature and pressure effect on the anisotropy of dielectric permeability in KDP and DKDP crystals Kedyulich, V.M. Slivka, A.G. Gerzanich, E.I. Guivan, A.M. Lukach, P.M. Temperature dependences of longitudinal and transverse dielectric permeability of KDP and DKDP crystals are studied at different values of hydrostatic pressure in order to determine the pressure behaviour of the isotropic point for these crystals. The isotropic point temperature in KDP crystals at atmospheric pressure is Ti = 186 K at the measuring field frequency 1 kHz and Ti = 176 K at the frequency of 1 MHz. In DKDP crystals the isotropic point is achieved at the temperature Ti = 300 K ( 1 kHz) and Ti = 253 K ( 1 MHz). The hydrostatic pressure increase results in the reduction of the isotropic point temperature with the pressure coefficients ∂Ti/∂p = −4.3 K/kbar for KDP and ∂Ti/∂p = −2.9 K/kbar for DKDP. The analysis of the experimental results in the framework of the Blinc-Zeks pseudospin formalism has shown a good agreement between the calculated and the experimentally obtained temperature of the isotropic point for KDP crystals. Проведено дослідження температурних залежностей повздовжньої та поперечної діелектричної проникності кристалів KDP та DKDP при різних величинах гідростатичного тиску з метою визначення баричної поведінки температури ізотропної точки для цих кристалів. Температура ізотропної точки в кристалах KDP при атмосферному тиску становить Ti = 186 K при частоті вимірювального поля 1 кГц та Ti = 176 K на частоті 1 МГц. В кристалах DKDP ізотропна точка реалізується при температурах Ti = 300 K (1 кГц) та Ti = 253 K ( 1 МГц). Збільшення гідростатичного тиску приводить до пониження температури ізотропної точки з баричними коефіцієнтами ∂Ti/∂p = −4.3 К/кбар для KDP та ∂Ti/∂p = −2.9 К/кбар для DKDP. Аналіз експериментальних результатів в рамках псевдоспінового формалізму Блінца-Жекша показав, що існує добре узгодження між розрахованою та експериментально визначеною температурою ізотропної точки для кристалів KDP. 2003 Article Temperature and pressure effect on the anisotropy of dielectric permeability in KDP and DKDP crystals / V.M. Kedyulich, A.G. Slivka, E.I. Gerzanich, A.M. Guivan, P.M. Lukach // Condensed Matter Physics. — 2003. — Т. 6, № 2(34). — С. 271-280. — Бібліогр.: 20 назв. — англ. 1607-324X PACS: 77.80.Bh, 77.22.Ch, 77.84.Fa DOI:10.5488/CMP.6.2.271 http://dspace.nbuv.gov.ua/handle/123456789/120714 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Temperature dependences of longitudinal and transverse dielectric permeability of KDP and DKDP crystals are studied at different values of hydrostatic pressure in order to determine the pressure behaviour of the isotropic point for these crystals. The isotropic point temperature in KDP crystals at atmospheric pressure is Ti = 186 K at the measuring field frequency 1 kHz and Ti = 176 K at the frequency of 1 MHz. In DKDP crystals the isotropic point is achieved at the temperature Ti = 300 K ( 1 kHz) and Ti = 253 K ( 1 MHz). The hydrostatic pressure increase results in the reduction of the isotropic point temperature with the pressure coefficients ∂Ti/∂p = −4.3 K/kbar for KDP and ∂Ti/∂p = −2.9 K/kbar for DKDP. The analysis of the experimental results in the framework of the Blinc-Zeks pseudospin formalism has shown a good agreement between the calculated and the experimentally obtained temperature of the isotropic point for KDP crystals.
format Article
author Kedyulich, V.M.
Slivka, A.G.
Gerzanich, E.I.
Guivan, A.M.
Lukach, P.M.
spellingShingle Kedyulich, V.M.
Slivka, A.G.
Gerzanich, E.I.
Guivan, A.M.
Lukach, P.M.
Temperature and pressure effect on the anisotropy of dielectric permeability in KDP and DKDP crystals
Condensed Matter Physics
author_facet Kedyulich, V.M.
Slivka, A.G.
Gerzanich, E.I.
Guivan, A.M.
Lukach, P.M.
author_sort Kedyulich, V.M.
title Temperature and pressure effect on the anisotropy of dielectric permeability in KDP and DKDP crystals
title_short Temperature and pressure effect on the anisotropy of dielectric permeability in KDP and DKDP crystals
title_full Temperature and pressure effect on the anisotropy of dielectric permeability in KDP and DKDP crystals
title_fullStr Temperature and pressure effect on the anisotropy of dielectric permeability in KDP and DKDP crystals
title_full_unstemmed Temperature and pressure effect on the anisotropy of dielectric permeability in KDP and DKDP crystals
title_sort temperature and pressure effect on the anisotropy of dielectric permeability in kdp and dkdp crystals
publisher Інститут фізики конденсованих систем НАН України
publishDate 2003
url http://dspace.nbuv.gov.ua/handle/123456789/120714
citation_txt Temperature and pressure effect on the anisotropy of dielectric permeability in KDP and DKDP crystals / V.M. Kedyulich, A.G. Slivka, E.I. Gerzanich, A.M. Guivan, P.M. Lukach // Condensed Matter Physics. — 2003. — Т. 6, № 2(34). — С. 271-280. — Бібліогр.: 20 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT kedyulichvm temperatureandpressureeffectontheanisotropyofdielectricpermeabilityinkdpanddkdpcrystals
AT slivkaag temperatureandpressureeffectontheanisotropyofdielectricpermeabilityinkdpanddkdpcrystals
AT gerzanichei temperatureandpressureeffectontheanisotropyofdielectricpermeabilityinkdpanddkdpcrystals
AT guivanam temperatureandpressureeffectontheanisotropyofdielectricpermeabilityinkdpanddkdpcrystals
AT lukachpm temperatureandpressureeffectontheanisotropyofdielectricpermeabilityinkdpanddkdpcrystals
first_indexed 2025-07-08T18:27:16Z
last_indexed 2025-07-08T18:27:16Z
_version_ 1837104352517423104
fulltext Condensed Matter Physics, 2003, Vol. 6, No. 2(34), pp. 271–280 Temperature and pressure effect on the anisotropy of dielectric permeability in KDP and DKDP crystals V.M.Kedyulich, A.G.Slivka, E.I.Gerzanich, A.M.Guivan, P.M.Lukach Uzhgorod National University, 32 Voloshina Str., 88000 Uzhgorod, Ukraine Received October 24, 2002, in final form April 4, 2003 Temperature dependences of longitudinal and transverse dielectric perme- ability of KDP and DKDP crystals are studied at different values of hydro- static pressure in order to determine the pressure behaviour of the isotrop- ic point for these crystals. The isotropic point temperature in KDP crystals at atmospheric pressure is Ti = 186 K at the measuring field frequen- cy 1 kHz and Ti = 176 K at the frequency of 1 MHz. In DKDP crystals the isotropic point is achieved at the temperature Ti = 300 K ( 1 kHz) and Ti = 253 K ( 1 MHz). The hydrostatic pressure increase results in the reduction of the isotropic point temperature with the pressure coefficients ∂Ti/∂p = −4.3 K/kbar for KDP and ∂Ti/∂p = −2.9 K/kbar for DKDP. The analysis of the experimental results in the framework of the Blinc-Žekš pseudospin formalism has shown a good agreement between the calculat- ed and the experimentally obtained temperature of the isotropic point for KDP crystals. Key words: ferroelectrics, dielectric permeability, hydrostatic pressure, isotropic point PACS: 77.80.Bh, 77.22.Ch, 77.84.Fa 1. Introduction KH2PO4 (KDP) and KD2PO4 (DKDP) crystals above the temperature of the ferroelectric first-order phase transition are tetragonal, while in the ferroelectric phase they are rhombic [1]. The anomalies of dielectric permeability, related to the phase transition, are observed both along the spontaneous polarization axis and normally to it due to a specific mechanism of the phase transition in these crystals. Proton ordering at hydrogenic bonds in the ab plane causes the displacement of ions along the c axis and the spontaneous polarization. The temperature dependence of longitudinal (along the spontaneous polarization direction) dielectric permeability of both crystals in the paraelectric phase obeys the c© V.M.Kedyulich, A.G.Slivka, E.I.Gerzanich, A.M.Guivan, P.M.Lukach 271 V.M.Kedyulich et al. Curie-Weiss law [2]. In the ferroelectric phase a shoulder is observed in this plot, re- lated to the effect of domain structure freezing [3,4]. The studies of hydrostatic pres- sure effect on the longitudinal dielectric permeability have shown that the increase of the all-round pressure causes the decrease of the phase transition temperatures with the coefficients ∂Tc/∂p = −4.6 K/kbar for KDP and ∂Tc/∂p = −2.4 K/kbar for DKDP [2] and the downward shift of the εc(T ) curves in the temperature scale. At the pressure near 18 kbar, the phase transition temperature in the KDP crystal is zero and the value ∂Tc/∂p tends to infinity, while the (p, T ) phase diagram of the DKDP crystal is linear. Such a behaviour of the pressure variation of the phase transition temperature in KDP crystals is related to the proton tunnelling effect, and the increase of the hydrogen atom mass in DKDP crystals sharply decreases the tunnelling probability [5,6]. The temperature dependence of transverse (normally to the spontaneous polar- ization axis) dielectric permeability in the KDP crystals at atmospheric pressure is given in [7]. At the phase transition temperature Tc = 122 K, the dependence εa(T ) reveals a step. Above the phase transition point in the paraelectric phase there is a maximum in the εa(T ) plot. The similar behaviour of the dielectric permeability was observed for antiferroelectric KMnF3, NH4H2AsO4 crystals [8]. The specific feature of the anisotropy of dielectric permeability in the paraelectric phase of KDP and DKDP crystals is the presence of an isotropic point where the longitudinal and transverse dielectric permeability values are equal [9]. At this point the crystals become isotropic with respect to the dielectric permeability εa = εb = εc. The aim of the present paper is to study the temperature dependences of longitudinal and transverse dielectric permeability of KDP and DKDP crystals at different values of external hydrostatic pressure as well as to trace the pressure behaviour of the isotropic point temperature. 2. Results Figure 1 shows the temperature dependences of longitudinal and transverse di- electric permeability of KDP crystals at atmospheric pressure at the measuring field frequency 1 kHz (curve 1) and 1 MHz (curve 2). No dispersion of the transverse dielectric permeability at these frequencies has been found (curve 3). At the fre- quency of 1 kHz the dependence of the longitudinal dielectric permeability has two anomalies: a maximum of εc(T ) at the phase transition temperature Tc = 122 K and a shoulder in the ferroelectric phase in the temperature range from 91 to 122 K, related to the domain structure transformation [4]. At the measuring field frequency of 1 MHz a number of extrema is observed in the εc(T ) plot in the vicinity of the phase transition point (curve 2). Such feature is the evidence of the piezoelectric res- onance in KDP crystals [10] and cannot be related to the order parameter relaxation time tending to infinity in the order/disorder-type ferroelectrics since in this case one minimum at the temperature dependence of the dielectric permeability should be observed at the phase transition temperature. 272 Anisotropy of dielectric permeability in KDP and DKDP Figure 1. Temperature dependences of the longitudinal dielectric permeability at the frequency of 1 kHz (1) and 1 MHz (2) and transverse permeability (3) of the KDP crystal. At room temperature the transverse dielectric permeability value is higher than the longitudinal one (see figure 1). The temperature decrease results in the increase of both values. However, the longitudinal dielectric permeability undergoes essential anomalous changes, its value sharply increasing while approaching the phase transi- tion point. Therefore, at the temperature Ti = 186 K (f = 1 kHz) the longitudinal and transverse dielectric permeability values become equal. The isotropic point tem- perature at the measuring field frequency of 1 MHz is Ti = 176 K (see the insert to figure 1). At the temperatures T < Ti the longitudinal dielectric permeability value exceeds the transverse one. The orientation dependence of the dielectric permeability, which is a tensor in an anisotropic crystal, is given by ε = εijlilj , (1) where εij are the components of the dielectric permeability tensor, li, lj are cosines of the angles between the direction in which the dielectric permeability is being determined, and the Cartesian coordinate axes corresponding to the tensor nota- tion, respectively. Using equation (1), for tetragonal KDP and DKDP crystals, the cross-section of the dielectric permeability indicative surface by the ab plane in the principal axes, is given by ε(ϕ) = εa sin2(ϕ) + εc cos2(ϕ), (2) where ϕ is the angle between the direction in which ε is determined and the ferro- electric axis c. Using equation (2), the cross-sections of the KDP crystal dielectric permeability indicative surface by the ab plane were built. The temperature trans- formation of these cross-sections in the vicinity of the isotropic point is shown in 273 V.M.Kedyulich et al. Figure 2. Temperature transformation of the cross-section of the dielectric per- meability indicative surface by the ac plane of the KDP crystal in the vicinity of the isotropic point: 1 – T = 275 K, 2 – T = 186 K, 3 – T = 150 K. figure 2. As it is seen in the figure, at the temperature T > Ti the major semiax- is of the dielectric permeability tensor is directed along the a axis, at T = Ti the longitudinal and transverse dielectric permeability values are equal and the indica- tive surface cross-section is circular, at T < Ti the major semiaxis of the tensor is directed along the ferroelectric axis c. The temperature dependences of the longitudinal and transverse dielectric per- meability of DKDP crystals at atmospheric pressure at two frequencies of the mea- suring field are given in figure 3. As in the case of KDP crystals, there is no dispersion of transverse dielectric permeability in DKDP, and in the temperature dependence of the longitudinal dielectric permeability the piezoresonance effects are seen to be re- vealed at the frequency of 1 MHz in the vicinity of the phase transition (Tc = 221 K) (see curve 2). The specific feature of DKDP crystals is a considerable dispersion of the longitudinal dielectric permeability. Therefore, unlike KDP crystals, the isotropic point temperature strongly depends on the measuring field frequency. At the fre- quency of 1 kHz the isotropic point is achieved at the temperature Ti = 300 K, while at the frequency of 1 MHz the Ti value is 253 K. The behaviour of the temperature dependences of the longitudinal and transverse dielectric permeability under external hydrostatic pressure is illustrated in figure 4 (for KDP) and in figure 5 (for DKDP). The all-round pressure is seen to result in the decrease of the phase transition temperature in both crystals and in the shift of the εa(T ) and εc(T ) dependences towards lower temperatures. This leads to the isotropic point temperature decrease in these crystals. For KDP crystal, the pressure 274 Anisotropy of dielectric permeability in KDP and DKDP Figure 3. Temperature dependences of longitudinal dielectric permeability at the frequencies of 1 kHz (1) and 1 MHz (2) and transverse dielectric permeability (3) of the DKDP crystal. Figure 4. Temperature dependences of longitudinal (solid circles) and transverse (open circles) dielectric permeability of the KDP crystal at different values of the external hydrostatic pressure p, kbar: 1 – 0; 2 – 1.7; 3 – 2.5; 4 – 4.25. The insert shows the pressure dependence of the isotropic point temperature at the frequency of 1 kHz (open circles) and 1 MHz (solid circles). 275 V.M.Kedyulich et al. Figure 5. Temperature dependences of longitudinal (solid circles) and transverse (open circles) dielectric permeability of the DKDP crystal at different values of the external hydrostatic pressure p, kbar: 1 – 0; 2 – 4.1. coefficient of the isotropic point temperature is ∂Ti/∂p = −4.3 K/kbar and does not depend on the measuring field frequency (see the insert to figure 4). For DKDP crystal ∂Ti/∂p = −2.9 K/kbar. 3. Analysis Using the pseudospin formalism [11,12], the authors of [7] have obtained the relations, describing the temperature dependences of longitudinal and transverse dielectric permeability in the paraelectric phase of KDP crystals: χc = 2Nµ1 · tanh ( Γ T ) Γ − J (0) tanh ( Γ T ) , (3) χa = Nµ2 2 Γ tanh ( Γ T ) 1 + J(0) 3Γ tanh ( Γ T ) , (4) where Γ is the tunnelling energy, J(0) is the dipolar interaction energy in the mean- field approximation, µ1 is the dipolar moment along the c axis, µ2 is the dipolar moment along the a axis, N = 1022 cm−3 [7] is the hydrogenic bond concentration. Using equations (3), (4), one can obtain the value of temperature Ti, corresponding to the isotropic point (χa = χc): Ti = Γ / arcth Γ(µ2 2 − 2µ2 1) J(0) ( 2 3 µ2 1 + µ2 2 ) . (5) 276 Anisotropy of dielectric permeability in KDP and DKDP Thus, the isotropic point temperature position in this model is given by four val- ues J(0), Γ, µ1 and µ2 which can be determined from the temperature dependences of the longitudinal and transverse dielectric permeability of KDP crystal. The analysis of equation (4) shows the existence of a kink in the εa(T ) de- pendence, which is clearly revealed experimentally. The temperature of the kink point for the transverse dielectric permeability Tf can be found from the condition ∂2χa/∂T 2 = 0: tanh ( Γ Tf ) = (3Tf − J(0))Γ 3Γ2 − J(0)Tf . (6) Using equation (4) and taking into account the relationship between J(0), Γ and the phase transition temperature Tc, given by [7] tanh ( Γ Tc ) = Γ J(0) , (7) the unknown values of the tunnelling energy Γ and dipolar interaction energy J(0) can be determined knowing the experimentally obtained phase transition tempera- tures Tc and kink points in the εa(T ) dependence. The unknown value of the dipolar moment along the a axis µ2 is determined from the experimental value of transverse susceptibility in the kink point of εa(Tf). By substituting equation (6) into equation (4) one obtains εa(Tf) = Nµ2 2 3Tf − J(0) 3Γ2 − J(0)2/3 . (8) The dipolar moment along the ferroelectric axis µ2 is determined based on the best fitting of the experimental dependence of the longitudinal dielectric permeabil- ity εc(T ) by equation (3). The experimental data for Tc, Tf , T exp i , εa(Tf) and the calculated values of J(0), Γ, µ1, µ2 for KDP crystal at different hydrostatic pressure values are given in table 1. In calculations, the regular part of the susceptibility χ0 = 10/4π [7] was taken into account. As one can see, for these crystals there is a good agreement between the experimentally obtained isotropic point temperature and the value calculated according to equation (5). The unexpected changes in the theoretical parameters Γ and µ1 with pressure were obtained (table 1). While the experimental behaviour of the dipolar moment could be related to the existence of the tricritical point in the phase (p, T ) diagram of the KDP crystal at p ≈ 2 kbar [13], the decrease of Γ with pressure disagrees with the common views [2]. The absence of the kink point at the temperature dependences of transverse dielectric permeability in the temperature range under investigation does not make it possible to use the above calculation techniques in analyzing the pressure behaviour of the isotropic point in DKDP crystals. 4. Conclusion Temperature dependences of longitudinal and transverse dielectric permeability of KDP and DKDP crystals were studied at different values of hydrostatic pressure 277 V.M.Kedyulich et al. Table 1. The experimental data for Tc, Tf , T exp i , εa(Tf ) and the calculated values of J(0), Γ, µ1, µ2, for KDP crystal at different hydrostatic pressure values. The values of µ1 and µ2 are given in SGS units. p, kbar Tc, K Tf , K εa(Tf) J(0), K Γ, K µ1, 10−18 µ2, 10−18 T theor i , K T exp i , K 0 122.0 171.5 57.3 208 190 0.951 3.94 183 186 1.7 114.3 162.5 57.0 196 180 0.969 3.82 178 181 2.5 110.2 157.0 57.2 189 174 0.976 3.76 174 174 4.25 106.5 147.5 56.8 177 163 0.950 3.62 164 168 and at two measuring field frequencies – 1 kHz and 1 MHz. The isotropic point temperature in KDP crystal at atmospheric pressure is Ti = 186 K at the measuring field frequency of 1 kHz, and Ti = 176 K at the frequency of 1 MHz. In DKDP crystals, the isotropic point is achieved at the temperatures Ti = 300 K (1 kHz) and Ti = 253 K (1 MHz). The hydrostatic pressure increase causes the decrease of the isotropic point temperature with the pressure coefficient ∂Ti/∂p = −4.3 K/kbar for KDP and ∂Ti/∂p = −2.9 K/kbar for DKDP. The pressure variation of the isotropic point temperature for both crystals is independent of the measuring field frequency. The analysis of the experimental results has shown that in the framework of the tunnelling model in the molecular-field approximation, a satisfactory quantitative description of the temperature behaviour of the transverse dielectric permeability of the KDP crystal in the paraelectric phase can be obtained, as well as the temperature coordinate of the isotropic point and its dependence on the external pressure can be determined. However, unexpected pressure dependences of the parameters of the tunnelling model such as the tunnelling energy Γ and dipolar moment µ1 were obtained. This is another evidence for the weakness of the tunnelling model for all-round description of pressure effects in KDP-type crystals. It has been shown in a number of papers [14–18] that an essential improvement of the theoretical description of the wide variety of the experimental data concerning the pressure effect on the physical properties of KDP-type crystals can be achieved with the account of short-range configurational interactions. Therefore, it seems important to perform further theoretical studies of the specific features of the temperature behaviour of longitudinal εc and transverse εa dielectric permeability in KDP-type crystals under external pressure, namely to analyze the obtained results in the framework of the proton ordering model with the account of short-range and long-range interactions and proton tunnelling at hydrogenic bonds in the four-particle cluster approximation [19,20]. Such studies could provide information on the physical grounds for the experimentally observed features at the εc(T ) and εa(T ) dependences discussed in the present work. 278 Anisotropy of dielectric permeability in KDP and DKDP References 1. Nelmes R.J., Tun Z., Kuhs W.F. // Ferroelectrics, 1987, vol. 71, p. 125. 2. Samara G.A. // Phys. Rev. Lett., 1971, vol. 27, p. 103. 3. Kuramoto K. // JPSJ, 1987, vol. 56, No. 5, p. 1859. 4. Nakamura E., Kuramoto K. // JPSJ, 1988, vol. 57, No. 6, p. 2182. 5. Blinc R., Svetina S., Žekš B. // Solid State Commun., 1972, vol. 10, p. 387. 6. Braeter H., Plakida N.M., Windsch W. // Solid State Commun., 1989, vol. 69, No. 3, p. 289. 7. Havlin S., Litov E., Uehling E.A. // Phys. Rev. B, 1974, vol. 9, No. 3, p. 1024. 8. Gesi K., Ozawa K. // JPSJ, 1984, vol. 53, No. 12, p. 4405. 9. Bush C. // Helv. Phys. Acta, 1938, vol. 11, p. 269. 10. Levitskii R.R., Slivka A.G., Moina A.P., Lukach P.M., Guivan A.M. // Journal of Physical Studies, 2002, vol. 6, No. 2, p. 197. 11. Gennes P.G. // Solid State Commun., 1963, vol. 1, p. 138. 12. Tokunaga M., Matsubara T. // Prog. Teor. Phys., 1968, vol. 35, p. 381. 13. Schmidt V.H., Western A.B., Baker A.G. // Phys. Rev. Lett., 1978, vol. 37, p. 839. 14. Stasyuk I.V., Biletskii I.N. // Bull. Acad. Sci. USSR, Phys. Ser., 1983, vol. 4, p. 79. 15. Stasyuk I.V., Levitskii R.R., Zachek I.R., Moina A.P., Duda A.S. // Condens. Matter Phys., 1996, iss. 8, p. 129. 16. Stasyuk I.V., Levitskii R.R., Moina A.P. et al. // J. Phys. Stud., 1999, vol. 3, p. 502. 17. Stasyuk I.V., Levitskii R.R., Moina A.P., Lisnii B.M. // Ferroelectrics, 2001, vol. 254, p. 213. 18. Stasyuk I.V., Levitskii R.R., Zachek I.R., Duda A.S. // Condens. Matter Phys., 2001, vol. 4, No. 3, p. 553. 19. Stasyuk I.V., Levitskii R.R., Moina A.P., // Phys. Rev. B, 1999, vol. 59, No. 13, p. 8530. 20. Stasyuk I.V., Levitskii R.R., Zachek I.R, Moina A.P. // Phys. Rev. B, 2000, vol. 62, No. 10, p. 6198. 279 V.M.Kedyulich et al. Вплив температури і тиску на анізотропію діелектричної проникності кристалів KDP і DKDP В.М.Кедюлич, О.Г.Сливка, О.І.Герзанич, Г.М.Гуйван, П.М.Лукач Ужгородський національний університет, 88000 Ужгород, вул. Волошина, 32 Отримано 24 жовтня 2002 р., в остаточному вигляді – 4 квітня 2003 р. Проведено дослідження температурних залежностей повздовжньої та поперечної діелектричної проникності кристалів KDP та DKDP при різних величинах гідростатичного тиску з метою визначення баричної поведінки температури ізотропної точки для цих криста- лів. Температура ізотропної точки в кристалах KDP при атмосфер- ному тиску становить Ti = 186 K при частоті вимірювального по- ля 1 кГц та Ti = 176 K на частоті 1 МГц. В кристалах DKDP ізо- тропна точка реалізується при температурах Ti = 300 K ( 1 кГц) та Ti = 253 K ( 1 МГц). Збільшення гідростатичного тиску приводить до пониження температури ізотропної точки з баричними коефіці- єнтами ∂Ti/∂p = −4.3 К/кбар для KDP та ∂Ti/∂p = −2.9 К/кбар для DKDP. Аналіз експериментальних результатів в рамках псевдоспіно- вого формалізму Блінца-Жекша показав, що існує добре узгоджен- ня між розрахованою та експериментально визначеною температу- рою ізотропної точки для кристалів KDP. Ключові слова: сегнетоелектрики, діелектрична проникність, гідростатичний тиск, ізотропна точка PACS: 77.80.Bh, 77.22.Ch, 77.84.Fa 280