Non-linear mechanical, electrical and thermal phenomena in piezoelectric crystals

Mechanical, electrical and thermal phenomena occurring in piezoelectric crystals were examined by non-linear approximation. For this purpose, use was made of the thermodynamic function of state, which describes an anisotropic body. Considered was the Gibbs function. The calculations included str...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автори: Warkusz, F., Linek, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2003
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120716
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Non-linear mechanical, electrical and thermal phenomena in piezoelectric crystals / F. Warkusz, A. Linek // Condensed Matter Physics. — 2003. — Т. 6, № 2(34). — С. 333-345. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-120716
record_format dspace
spelling irk-123456789-1207162017-06-13T03:03:11Z Non-linear mechanical, electrical and thermal phenomena in piezoelectric crystals Warkusz, F. Linek, A. Mechanical, electrical and thermal phenomena occurring in piezoelectric crystals were examined by non-linear approximation. For this purpose, use was made of the thermodynamic function of state, which describes an anisotropic body. Considered was the Gibbs function. The calculations included strain tensor εij = f(σkl , En, T), induction vector Dm = f(σkl , En, T) and entropy S = f(σkl , En, T) as function of stress σkl , field strength En and temperature difference T. The equations obtained apply to anisotropic piezoelectric bodies provided that the “forces” σkl , En, T acting on the crystal are known. Механічні, електричні та термічні явища у п’єзоелектричних кристалах вивчаються у нелінійному наближенні. З цією метою використано термодинамічний потенціал, який описує анізотропне тіло. Розглянуто потенціал Гіббса. Розрахунки охоплюють тензор деформації εij = f(σkl , En, T), вектор індукції Dm = f(σkl , En, T) та ентропію S = f(σkl , En, T) як функцію механічного напруження σkl , величини поля En і різниці температур T. Отримано рівняння, які описують анізотропні п’єзоелектричні тіла, якщо відомі “сили” σkl , En, T, що діють на кристал. 2003 Article Non-linear mechanical, electrical and thermal phenomena in piezoelectric crystals / F. Warkusz, A. Linek // Condensed Matter Physics. — 2003. — Т. 6, № 2(34). — С. 333-345. — Бібліогр.: 16 назв. — англ. 1607-324X PACS: 65.40.-b, 77.65.-j, 77.65.Bn, 77.65.Ly, 05.70.Ce DOI:10.5488/CMP.6.2.333 http://dspace.nbuv.gov.ua/handle/123456789/120716 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Mechanical, electrical and thermal phenomena occurring in piezoelectric crystals were examined by non-linear approximation. For this purpose, use was made of the thermodynamic function of state, which describes an anisotropic body. Considered was the Gibbs function. The calculations included strain tensor εij = f(σkl , En, T), induction vector Dm = f(σkl , En, T) and entropy S = f(σkl , En, T) as function of stress σkl , field strength En and temperature difference T. The equations obtained apply to anisotropic piezoelectric bodies provided that the “forces” σkl , En, T acting on the crystal are known.
format Article
author Warkusz, F.
Linek, A.
spellingShingle Warkusz, F.
Linek, A.
Non-linear mechanical, electrical and thermal phenomena in piezoelectric crystals
Condensed Matter Physics
author_facet Warkusz, F.
Linek, A.
author_sort Warkusz, F.
title Non-linear mechanical, electrical and thermal phenomena in piezoelectric crystals
title_short Non-linear mechanical, electrical and thermal phenomena in piezoelectric crystals
title_full Non-linear mechanical, electrical and thermal phenomena in piezoelectric crystals
title_fullStr Non-linear mechanical, electrical and thermal phenomena in piezoelectric crystals
title_full_unstemmed Non-linear mechanical, electrical and thermal phenomena in piezoelectric crystals
title_sort non-linear mechanical, electrical and thermal phenomena in piezoelectric crystals
publisher Інститут фізики конденсованих систем НАН України
publishDate 2003
url http://dspace.nbuv.gov.ua/handle/123456789/120716
citation_txt Non-linear mechanical, electrical and thermal phenomena in piezoelectric crystals / F. Warkusz, A. Linek // Condensed Matter Physics. — 2003. — Т. 6, № 2(34). — С. 333-345. — Бібліогр.: 16 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT warkuszf nonlinearmechanicalelectricalandthermalphenomenainpiezoelectriccrystals
AT lineka nonlinearmechanicalelectricalandthermalphenomenainpiezoelectriccrystals
first_indexed 2025-07-08T18:27:28Z
last_indexed 2025-07-08T18:27:28Z
_version_ 1837104365954924544
fulltext Condensed Matter Physics, 2003, Vol. 6, No. 2(34), pp. 333–345 Non-linear mechanical, electrical and thermal phenomena in piezoelectric crystals F.Warkusz, A.Linek Institute of Physics, Opole University, 45–052 Opole, Poland Received August 25, 2002, in final form March 31, 2003 Mechanical, electrical and thermal phenomena occurring in piezoelectric crystals were examined by non-linear approximation. For this purpose, use was made of the thermodynamic function of state, which describes an anisotropic body. Considered was the Gibbs function. The calcula- tions included strain tensor εij = f(σkl, En, T ), induction vector Dm = f(σkl, En, T ) and entropy S = f(σkl, En, T ) as function of stress σkl, field strength En and temperature difference T . The equations obtained apply to anisotropic piezoelectric bodies provided that the “forces” σkl, En, T acting on the crystal are known. Key words: piezoelectric crystals, thermodynamics, anisotropic bodies, tensors PACS: 65.40.-b, 77.65.-j, 77.65.Bn, 77.65.Ly, 05.70.Ce 1. Introduction The present paper provides a thermodynamic description of elastic (mechanical), electrical and thermal properties of crystals in a non-linear approximation. The physical processes and phenomena that occur in a real crystal generally are of a non-linear character, similarly to those in any other physical body which displays a certain degree of nonlinearity. It is conventional to describe non-linear properties (i.e., physical nonlinearity) in terms of higher-order material constants, and such are the factors of proportionality incorporated in the Taylor series expansion of a non-linear relation describing the given effect. In general, the mentioned constants are tensors. Nonlinearity manifests in the values of the second-order material constants being the functions of the values of the applied forces which act onto the crystal, e.g. the elasticity constants can be a function of the applied stress σ. Thus, the standard Hooke equation may be written as follows: ε = s(σ)σ, (1.1) c© F.Warkusz, A.Linek 333 F.Warkusz, A.Linek where ε denotes strain and s(σ) is an elasticity constant which varies according to the stress σ applied. Hence, s(σ) takes the form s(σ) = s1 + s2σ + s3σ 2 + . . . , (1.2) where s1 is a second-order material constant (modulus of elasticity). By linear approximation, equation (1.1) becomes as follows: ε = s1σ, where s1 = ∂ε/∂σ. Using non-linear approximation, we have ε = ∂ε ∂σ σ + 1 2! ∂2ε ∂σ2 σ2 + 1 3! ∂3ε ∂σ3 σ3 + . . . , where s1 = ∂ε ∂σ , s2 = 1 2! ∂2ε ∂σ2 , s3 = 1 3! ∂3ε ∂σ3 . The coefficients s1, s2, s3, . . . of equation (1.2) can be regarded as material con- stants which are proportional to the stresses (σ) of relevant powers. Hence, they are material constants of second, third, fourth or higher order. Thus, the Hooke equation for non-linear effects can be written as [1,2] ε = s(σ)σ = s1σ + s2σ 2 + s3σ 3 + . . . or ε = (s1 + s2σ + s3σ 2 + . . .)σ. With tensor notation for anisotropic bodies, the relation of s = s1 + s2σ + s3σ 2 + . . . takes the following form: s = sijkl + sijklpqσpq + sijklpqrsσpqσrs + . . . and the Hooke equation ε = s(σ)σ = s1σ + s2σ 2 + s3σ 3 + . . . becomes εij = sijklσkl + sijklpqσpqσkl + sijklpqrsσpqσrsσkl + . . . in tensor notation, where sijkl is a fourth-order tensor (second-order material con- stant), sijklpq is a sixth-order tensor (third-order material constant), sijklpqrs is an eight-order tensor (fourth-order material constant), and the coefficients i, j, k, l, p, q, r, s take the values of 1, 2, 3. Summation signs have been omitted [1,3,4]. Higher-order material constants are formally derived from thermodynamic func- tions. The procedure is similar to that for the linear case. If, for example, strain ε is produced simultaneously by stress σ, by electric field E, and temperature variations T , the equation of state for non-linear processes, which includes material constants only up to the third order, can be written as ε = s1σ + d1E + α1T + s2σ 2 + d2E 2 + α2T 2 + kσEσE + kσT σT + kETET, 334 Non-linear phenomena in piezoelectric crystals where s1 = ∂ε ∂σ , d1 = ∂ε ∂E , α1 = ∂ε ∂T , s2 = 1 2 ∂2ε ∂σ2 , d2 = 1 2 ∂2ε ∂E2 , α2 = 1 2 ∂2ε ∂T 2 , kσE = ∂2ε ∂σ∂E , kσT = ∂2ε ∂σ∂T , kET = ∂2ε ∂E∂T . Apart from second-order material constants, s1, d1, α1, and third-order material constants s2, d2, α2, there are also third-order “mixed” material constants kσE, kσT and kET . The order of the material constant is defined by the order of the derivative of the thermodynamic function and not by the order of the “force” acting onto the crystal or by the order of the material constant tensor. The problem will be presented more in detail in section 2. 2. Thermodynamic relations in crystals and Gibbs functions According to the first law of thermodynamics, the total energy U of a body is the sum of different energy types. In piezoelectric crystals, energy balance is primarily accounted for by mechanical, electrical and thermal energy. The effect of magnetic energy or gravitational energy on the phenomena occurring in piezoelectric crystals may be neglected. In general, there are eight thermodynamic functions that can be used to describe a piezoelectric phenomenon. The form of the function depends on the choice of the independent variables, selected according to the conditions under which the crystal is to be examined [2]. In the present paper we confine ourselves to thermodynamics, that is, Gibbs function G. Mathematical analysis enables us to define particular material constants, as well as to establish many interesting relations between them, by linear and non- linear approximation. G = U − εijσij − EmDm − TS, (2.1) where i, j, m = 1, 2, 3. Let us consider the differential form dG, which describes the state of the crystal following the application of three different “forces” – stress σij, electric field Em, and temperature T . The forces acting onto the crystal are independent variables. Thus, we have dG = dU − εijdσij − σijdεij − EmdDm − DmdEm − SdT − TdS. (2.2) By virtue of the first and second law of thermodynamics, dU = σijdεij + EmdDm + TdS, (2.3) where i, j, m = 1, 2, 3. Substituting (2.3) into (2.2), we obtain dG = −εijdσij − DmdEm − SdT. (2.4) 335 F.Warkusz, A.Linek Strain εij, induction Dm and entropy S are functions of stress σkl, electric field En and temperature T : εij = f(σkl, En, T ), Dm = f(σkl, En, T ), S = f(σkl, En, T ). Differentiating the function G with respect to individual independent variables, and having determined the remaining values, we obtain dG = ( ∂G ∂σij ) E,T dσij + ( ∂G ∂Em ) σ,T dEm + ( ∂G ∂T ) σ,E dT. (2.5) Comparing the coefficients of (2.4) and (2.5), we can derive the relations that describe particular quantities: εij = − ∂G ∂σij ∣ ∣ ∣ ∣ ∣ E,T , Dm = − ∂G ∂Em ∣ ∣ ∣ ∣ ∣ σ,T , S = − ∂G ∂T ∣ ∣ ∣ ∣ ∣ σ,E . The indices in the lower part of the vertical line show the independent variable, which takes a constant value during differentiation. The function εij, Dm and S can be expanded into a Taylor series. All derivatives incorporated in the Taylor’s series are the material constants. 2.1. Material constants derived from function εij Second-order elasticity constant ∂εij ∂σkl ∣ ∣ ∣ ∣ ∣ E,T = ∂ ∂σkl ( − ∂G ∂σij ) = − ∂2G ∂σkl∂σij ∣ ∣ ∣ ∣ ∣ E,T = sE,T ijkl . Second-order piezoelectric constant ∂εij ∂En ∣ ∣ ∣ ∣ ∣ σ,T = ∂ ∂En ( − ∂G ∂σij ) = − ∂2G ∂En∂σij ∣ ∣ ∣ ∣ ∣ T = dT ijn . Second-order piezocalorific constant ∂εij ∂T ∣ ∣ ∣ ∣ ∣ σ,E = ∂ ∂T ( − ∂G ∂σij ) = − ∂2G ∂T∂σij ∣ ∣ ∣ ∣ ∣ E = αE ij . Third-order elasticity constant ∂2εij ∂σkl∂σpq ∣ ∣ ∣ ∣ ∣ E,T = ∂2 ∂σkl∂σpq ( − ∂G ∂σij ) = − ∂3G ∂σkl∂σpq∂σij ∣ ∣ ∣ ∣ ∣ E,T = sE,T ijklpq . Third-order piezoelectric constant ∂2εij ∂σkl∂En ∣ ∣ ∣ ∣ ∣ T = ∂2 ∂σkl∂En ( − ∂G ∂σij ) = − ∂3G ∂σkl∂En∂σij ∣ ∣ ∣ ∣ ∣ T = dT ijkln . 336 Non-linear phenomena in piezoelectric crystals Third-order piezocalorific constant ∂2εij ∂σkl∂T ∣ ∣ ∣ ∣ ∣ E = ∂2 ∂σkl∂T ( − ∂G ∂σij ) = − ∂3G ∂σkl∂T∂σij ∣ ∣ ∣ ∣ ∣ E = αE ijkl . Third-order electrostriction constant ∂2εij ∂En∂Et ∣ ∣ ∣ ∣ ∣ σ,T = ∂2 ∂En∂Et ( − ∂G ∂σij ) = − ∂3G ∂En∂Et∂σij ∣ ∣ ∣ ∣ ∣ T = oT ijnt . Third-order constant ∂2εij ∂En∂T ∣ ∣ ∣ ∣ ∣ σ = ∂2 ∂En∂T ( − ∂G ∂σij ) = − ∂3 ∂En∂T∂σij = kijn . Third-order thermal expansion constant ∂2εij ∂T∂T1 ∣ ∣ ∣ ∣ ∣ σ,E = ∂2 ∂T∂T1 ( − ∂G ∂σij ) = − ∂3G ∂T∂T1∂σij ∣ ∣ ∣ ∣ ∣ E = rE ij . 2.2. Material constants derived from function Dm Second-order piezoelectric constant ∂Dm ∂σkl ∣ ∣ ∣ ∣ ∣ E,T = ∂ ∂σkl ( − ∂G ∂Em ) = − ∂2G ∂σkl∂Em ∣ ∣ ∣ ∣ ∣ T = dT klm . Second-order permittivity constant ∂Dm ∂En ∣ ∣ ∣ ∣ ∣ σ,T = ∂ ∂En ( − ∂G ∂Em ) = − ∂2G ∂En∂Em ∣ ∣ ∣ ∣ ∣ σ,T = εσ,T mn . Second-order electric heat constant ∂Dm ∂T ∣ ∣ ∣ ∣ ∣ σ,E = ∂ ∂T ( − ∂G ∂Em ) = − ∂2G ∂T∂Em ∣ ∣ ∣ ∣ ∣ σ = pσ m . Third-order piezoelectric constant ∂2Dm ∂σkl∂σpq ∣ ∣ ∣ ∣ ∣ E,T = ∂2 ∂σkl∂σpq ( − ∂G ∂Em ) = − ∂3G ∂σkl∂σpq∂Em ∣ ∣ ∣ ∣ ∣ T = dT klpqm . Third-order electrostriction constant ∂2Dm ∂σkl∂En ∣ ∣ ∣ ∣ ∣ T = ∂2 ∂σkl∂En ( − ∂G ∂Em ) = − ∂3G ∂σkl∂En∂Em ∣ ∣ ∣ ∣ ∣ T = oT klmn . Third-order constant ∂2Dm ∂σkl∂T ∣ ∣ ∣ ∣ ∣ E = ∂2 ∂σkl∂T ( − ∂G ∂Em ) = − ∂3 ∂σkl∂T∂Em = kklm . 337 F.Warkusz, A.Linek Third-order permittivity constant ∂2Dm ∂En∂Et ∣ ∣ ∣ ∣ ∣ σ,T = ∂2 ∂En∂Et ( − ∂G ∂Em ) = − ∂3G ∂En∂Et∂Em ∣ ∣ ∣ ∣ ∣ σ,T = εσ,T mnt . Third-order electric heat constant ∂2Dm ∂En∂T ∣ ∣ ∣ ∣ ∣ σ = ∂2 ∂En∂T ( − ∂G ∂Em ) = − ∂3G ∂En∂T∂Em ∣ ∣ ∣ ∣ ∣ σ = pσ mn . Third-order pyroelectric constant ∂2Dm ∂T1∂T ∣ ∣ ∣ ∣ ∣ σ,E = ∂2 ∂T1∂T ( − ∂G ∂Em ) = − ∂3G ∂T1∂T∂Em ∣ ∣ ∣ ∣ ∣ σ = uσ m . 2.3. Material constants derived from function S Second-order piezocalorific constant ∂S ∂σkl ∣ ∣ ∣ ∣ ∣ E,T = ∂ ∂σkl ( − ∂G ∂T ) = − ∂2G ∂σkl∂T ∣ ∣ ∣ ∣ ∣ E = αE kl . Second-order electric heat constant ∂S ∂En ∣ ∣ ∣ ∣ ∣ σ,T = ∂ ∂En ( − ∂G ∂T ) = − ∂2G ∂En∂T ∣ ∣ ∣ ∣ ∣ σ = pσ n . Second-order thermal capacity constant ∂S ∂T ∣ ∣ ∣ ∣ ∣ σ,E = ∂ ∂T ( − ∂G ∂T1 ) = − ∂2G ∂T∂T1 ∣ ∣ ∣ ∣ ∣ σ,E = ξσ,E . Third-order piezocalorific constant ∂2S ∂σkl∂σpq ∣ ∣ ∣ ∣ ∣ E,T = ∂2 ∂σkl∂σpq ( − ∂G ∂T ) = − ∂3G ∂σkl∂σpq∂T ∣ ∣ ∣ ∣ ∣ E = αE klpq . Third-order constant ∂2S ∂σkl∂En ∣ ∣ ∣ ∣ ∣ T = ∂2 ∂σkl∂En ( − ∂G ∂T ) = − ∂3 ∂σkl∂En∂T = kkln . Third-order thermal expansion constant ∂2S ∂σkl∂T ∣ ∣ ∣ ∣ ∣ E = ∂2 ∂σkl∂T ( − ∂G ∂T1 ) = − ∂3G ∂σkl∂T∂T1 ∣ ∣ ∣ ∣ ∣ E = rE kl . Third-order electric heat constant ∂2S ∂En∂Et ∣ ∣ ∣ ∣ ∣ σ,T = ∂2 ∂En∂Et ( − ∂G ∂T ) = − ∂3G ∂En∂Et∂T ∣ ∣ ∣ ∣ ∣ σ = pσ nt . 338 Non-linear phenomena in piezoelectric crystals Third-order pyroelectric constant ∂2S ∂En∂T ∣ ∣ ∣ ∣ ∣ σ = ∂2 ∂En∂T ( − ∂G ∂T1 ) = − ∂3G ∂En∂T∂T1 ∣ ∣ ∣ ∣ ∣ σ = uσ n . Third-order thermal capacity constant ∂2S ∂T∂T1 ∣ ∣ ∣ ∣ ∣ σ,E = ∂2 ∂T∂T1 ( − ∂G ∂T2 ) = − ∂3G ∂T∂T1∂T2 ∣ ∣ ∣ ∣ ∣ σ,E = ρσ,E . 2.4. Equalities between material constants ∂Dm ∂σkl ∣ ∣ ∣ ∣ ∣ E,T = ∂εkl ∂Em ∣ ∣ ∣ ∣ ∣ σ,T = dT klm , ∂2S ∂σkl∂σpq ∣ ∣ ∣ ∣ ∣ E,T = ∂2εkl ∂σpq∂T ∣ ∣ ∣ ∣ ∣ E = αE klpq , ∂Dm ∂σkl∂σpq ∣ ∣ ∣ ∣ ∣ E,T = ∂2εkl ∂σpq∂Em ∣ ∣ ∣ ∣ ∣ T = dT klmpq , ∂2S ∂En∂T ∣ ∣ ∣ ∣ ∣ σ = ∂Dn ∂T∂T1 ∣ ∣ ∣ ∣ ∣ σ,E = uσ n , ∂S ∂En ∣ ∣ ∣ ∣ ∣ σ,T = ∂Dn ∂T ∣ ∣ ∣ ∣ ∣ σ,E = pσ n , ∂2S ∂σkl∂T ∣ ∣ ∣ ∣ ∣ E = ∂2εkl ∂T∂T1 ∣ ∣ ∣ ∣ ∣ σ,E = rE kl , ∂2S ∂En∂Et ∣ ∣ ∣ ∣ ∣ σ,T = ∂Dn ∂Et∂T ∣ ∣ ∣ ∣ ∣ σ = pσ nt , ∂Dm ∂σkl∂En ∣ ∣ ∣ ∣ ∣ T = ∂2εkl ∂En∂Em ∣ ∣ ∣ ∣ ∣ σ,T = oT klmn , ∂S ∂σkl ∣ ∣ ∣ ∣ ∣ E,T = ∂εkl ∂T ∣ ∣ ∣ ∣ ∣ σ,E = αE kl , ∂2εij ∂En∂T ∣ ∣ ∣ ∣ ∣ E = ∂2Dn ∂σij∂T ∣ ∣ ∣ ∣ ∣ E = ∂2S ∂σij∂En ∣ ∣ ∣ ∣ ∣ T = kijn . With the material constants (tensors) defined above, we can rewrite function εij, Dm and S from Taylor series into form: εij = (sE,T ijkl + 1 2 sE,T ijklpqσpq + 1 2 dT ijklnEn + 1 2 αE ijklT )σkl + (dT ijn + 1 2 dT klijnσkl + 1 2 oT ijntEt + 1 2 kijnT )En + (αE ij + 1 2 αE ijklσkl + 1 2 kijnEn + 1 2 rE ijT1)T, (2.6) Dm = (dT mkl + 1 2 dT mklpqσpq + 1 2 kmklT + 1 2 oT klmnEn)σkl + (εT,σ nm + 1 2 εT,σ nmtEt + 1 2 oT nmklσkl + 1 2 pσ nmT )En + (pσ m + 1 2 kmklσkl + 1 2 pσ mnEn + 1 2 uσ mT1)T, (2.7) S = (αE kl + 1 2 αE klpqσpq + 1 2 kklnEn + 1 2 rE klT )σkl + (pσ n + 1 2 knklσkl + 1 2 pσ ntEt + 1 2 uσ nT )En + (ξE,σ + 1 2 rE klσkl + 1 2 uσ nEn + ρE,σT1)T. (2.8) 339 F.Warkusz, A.Linek 3. Linear and non-linear effects of the equations of state Considering, for example, the equation of state derived from the Gibbs function G for non-linear effects, we can easily obtain the equations of state for linear effects by neglecting higher-order tensors. Thus, by virtue of (2.6), (2.7) and (2.8) we have εij = sE,T ijklσkl + dT ijnEn + αE ijT, Dm = dT mklσkl + εT,σ nmEn + pσ mT, S = αE klσkl + pσ nEn + ξE,σT (3.1) which are valid for linear effects [7,8,9]. By virtue of the symmetry of some tensors (tensor components in matrix tables), the relations of (3.1) can be presented in matrix form. Hooke’s law is often expressed in its contracted notation. Then, the equivalence between the components of the compliance fourth-rank tensor sijkl and the compo- nents of the 6 × 6 matrix s is shown to be: sijkl = smn , m, n = 1, 2, 3, 2sijkl = smn , m = 1, 2, 3, n = 4, 5, 6, 4sijkl = smn , m, n = 4, 5, 6 in which the following contraction rule is applied for replacing a pair of indices by a single contracted index: 11 → 1, 22 → 2, 33 → 3, (23, 32) → 4, (13, 31) → 5, (12, 21) → 6. Furthermore, the full tensor suffixes of the stresses σ and strains ε are contracted according to the scheme: σ11 = σ1 , σ22 = σ2 , σ33 = σ3 , (σ23, σ32) = σ4 , (σ13, σ31) = σ5 , (σ12, σ21) = σ6 , ε11 = ε1 , ε22 = ε2 , ε33 = ε3 , (2ε23, 2ε32) = ε4 , (2ε13, 2ε31) = ε5 , (2ε12, 2ε21) = ε6 and dijk = dmn , m, n = 1, 2, 3, 2dijk = dmn , m = 1, 2, 3, n = 4, 5, 6, α11 = α1 , α22 = α2 , α33 = α3 , (α23, α32) = α4, (α13, α31) = α5, (α12, α21) = α6 . The relations of (3.1) constitute the starting set of the equations of state, which describe the environment, and they are widely used to solve the problems dealt with in piezoelectricity. Basic effects are described by the material constants (tensors) sE,T ijkl , εT,σ nm, ξE,σ that occur at the diagonal of the set of equations, whereas conjugate 340 Non-linear phenomena in piezoelectric crystals effects are defined by the remaining constants. On rewriting the material constants of (3.1) in a matrix form, we obtain a symmetrical matrix of linear effects:     εij Dm S     =     sE,T ijkl dT ijn αE ij dT mkl εT,σ nm pσ m αE kl pσ n ξE,σ         σkl En T     . (3.2) The equivalence between the components of the compliance sixth-rank tensor sijklpq and the components of the 6 × 21 matrix is shown to be: Sijklpq = smno , m = 1, 2, 3, n = o = 1, 2, 3, 2sijklpq = smno , m = 1, 2, 3, n 6= o, n = 1, 2, o = 2, 3, 4sijklpq = smno , m = 1, 2, 3, n = 1, 2, 3, o = 4, 5, 6, n = o = 4, 5, 6, 8sijklpq = smno , m = 1, 2, 3, n = 4, 5, o = 5, 6, 2sijklpq = smno , m = 4, 5, 6, n = o = 1, 2, 3, 4sijklpq = smno , m = 4, 5, 6, n 6= o, n = 1, 2, o = 2, 3, 8sijklpq = smno , m = 4, 5, 6, n = 1, 2, 3, o = 4, 5, 6, n = o = 4, 5, 6, 16sijklpq = smno , m = 4, 5, 6, n = 4, 5, o = 5, 6. The equation εij = 1 2 sET ijklpqσklσpq , i, j, k, l, p, q = 1, 2, 3 can be written in the form εm = 1 2 smnoσnσo , m, n, o = 1, 2, 3, . . . . Considering equations (2.6), (2.7) and (2.8) we obtain in a non-linear approximation: εij = sijklσkl + 1 2 sijklpqσklσpq + . . . , Dm = dmklσkl + 1 2 dmklpqσklσpq + . . . , S = αklσkl + 1 2 αklpqσklσpq + . . .          if En = 0, ∆T = 0, εij = dnijEn + 1 2 oijntEnEt + . . . , Dm = εnmEn + 1 2 εnmtEnEt + . . . , S = pnEn + 1 2 pntEnEt + . . .          if σkl = 0, ∆T = 0, εij = αijT + 1 2 rijTT + . . . , Dm = pmT + 1 2 umTT + . . . , S = ξT + 1 2 ρTT + . . .          if σkl = 0, En = 0. An analogical matrix equation can be derived for non-linear effects (equations (2.6), (2.7) and (2.8)):    εij Dm S    =    A D E D B F E F C       σkl En T    , (3.3) 341 F.Warkusz, A.Linek where the basic effects are given by the following constants: A = sE,T ijkl + 1 2 sE,T ijklpqσpq + 1 2 dT ijklnEn + 1 2 αE ijklT, B = εT,σ nmt + 1 2 εT,σ nmtEn + 1 2 oT nmklσkl + 1 2 pσ nmT, C = ξE,σ + 1 2 ρE,σT + 1 2 uσ nEn + 1 2 rE klσkl and the conjugate effects are described by D = dT ijn + 1 2 dT klijnσkl + 1 2 oT ijntEt + 1 2 kijnT, E = αE ij + 1 2 αE ijklσkl + 1 2 rE ijT + 1 2 kijnEn , F = pσ m + 1 2 pσ mnEn + 1 2 kmklσkl + 1 2 uσ mT. As we can see, the matrix of non-linear effects is also a symmetrical one. 4. Summary Using the Gibbs function (G), the equations describing the physical quantities εij, Dm, S have been derived for the non-linear effects of piezoelectric bodies. Relevant equations are included in section 3. It has been demonstrated that the relations between the material constants, which are tensors of zeroth to sixth order, can be written in non-linear approximation in the form of material equations where the elements of the matrices are the sums of appropriate matrices which represent the tensors (relation of (3.3)). The relations of (3.3) were used to derive the linear effects (relations of (3.2)). The equations describing linear and non-linear phenomena for particular crystal- lographic point groups reduce because of monocrystal symmetry [5,6,12,13,14,15,16]. From the rewritten relations of (2.6, 2.7, 2.8) in the matrix notation (table 1) we can easily identify the interrelations of the tensor components, especially for separate physical effects. Further simplifications and decays of some components of higher order tensors may be obtained for appropriate point groups (crystal classes). Table 1. Matrices of the coefficients (tensor components) in non-linear expansion. σn σnσo Enσo σnT En EnEt EnT T T 2 εm smn 6 × 6 smno 6 × 21 dmno 6 × 15 αmnl 6 × 6 dnm 6 × 3 omnt 6 × 6 kmn 6 × 3 αm 6 × 1 rm 6 × 1 Dm dmn 3 × 6 dnmo 3 × 21 oomn 3 × 15 knm 3 × 6 εmn 3 × 3 εmnt 3 × 6 pnm 3 × 3 pm 3 × 1 um 3 × 1 S αn 1 × 6 αno 1 × 21 kon 1 × 15 rn 1 × 6 pn 1 × 3 pnt 1 × 6 un 1 × 3 ξ 1 × 1 ρ 1 × 1 (6 + 3 + 1) × (6 + 21 + 15 + 6 + 3 + 6 + 3 + 1 + 1) = 10 × 62 342 Non-linear phenomena in piezoelectric crystals In 1952, with the aim to interpret the properties of the tetragonal antiferroelectric crystal ND4D2PO4, Mason [10,11] made use of the elastic Gibbs function G1 : G1 = U − εijσij − TS in its differential form: dG1 = −εijdσkl + EndDn − SdT. The equations and formulae describing εij, En and S, which have been derived by Mason [10], depend on σkl, Dn and T . So it is not surprising that they differ from the equations presented in this paper (equations (2.6), (2.7) and (2.8)) both in linear and non-linear approximations. In our calculations we used a Gibbs function which had the form of G: G = U − εijσkl − EnDn − TS and a differential form of dG = −εijdσkl − DndEn − SdT. The equations obtained for εij, Dn and S depend on σkl, En and T . There is a definite sense in which our results differ from those achieved by Mason. For example, according to Mason (function G1) [10] we have the following relations for the linear effects: εij = ∂εij ∂σkl ∣ ∣ ∣ ∣ ∣ D,T σkl + ∂εij ∂Dm ∣ ∣ ∣ ∣ ∣ σ,T Dm + ∂εij ∂T ∣ ∣ ∣ ∣ ∣ σ,D T, En = ∂En ∂σkl ∣ ∣ ∣ ∣ ∣ D,T σkl + ∂En ∂Dm ∣ ∣ ∣ ∣ ∣ σ,T Dm + ∂En ∂T ∣ ∣ ∣ ∣ ∣ σ,D T, S = ∂S ∂σkl ∣ ∣ ∣ ∣ ∣ D,T σkl + ∂S ∂Dm ∣ ∣ ∣ ∣ ∣ σ,T Dm + ∂S ∂T ∣ ∣ ∣ ∣ ∣ σ,D T. Our results (based on function G) take the form εij = ∂εij ∂σkl ∣ ∣ ∣ ∣ ∣ E,T σkl + ∂εij ∂En ∣ ∣ ∣ ∣ ∣ σ,T En + ∂εij ∂T ∣ ∣ ∣ ∣ ∣ σ,E T, Dm = ∂Dm ∂σkl ∣ ∣ ∣ ∣ ∣ E,T σkl + ∂Dm ∂En ∣ ∣ ∣ ∣ ∣ σ,T En + ∂Dm ∂T ∣ ∣ ∣ ∣ ∣ σ,E T, S = ∂S ∂σkl ∣ ∣ ∣ ∣ ∣ E,T σkl + ∂S ∂En ∣ ∣ ∣ ∣ ∣ σ,T En + ∂S ∂T ∣ ∣ ∣ ∣ ∣ σ,E T. Relevant differences have been underlined. Considering the physical properties of the crystals, the symmetries of the tensor components and the order of differentiation of the thermodynamic function of state as a total differential, we can use a more concise matrix notation, e.g: 343 F.Warkusz, A.Linek sijkl → smn (m, n = 1, . . . , 6), fourth-order tensor, second-order physical constant; sijklpq → smno (m, n, o = 1, . . . , 6), sixth-order tensor, third-order physical constant; dijkln → dmno (m, n = 1, . . . , 6, o = 1, 2, 3), fifth-order tensor, third-order physical constant; dnij → dnm (n = 1, 2, 3, m = 1, . . . , 6), third-order tensor, second-order physical constant; oijnt → omnt (m = 1, . . . , 6, n, t = 1, 2, 3), fourth-order tensor, third- order physical constant; αij → αm (m = 1, . . . , 6), second-order tensor, second-order physical constant, etc. During transition from tensor to matrix notation we neglected the coefficients that were different for relevant components (those for sijkl and sijklpq are listed in section 3). Equally concise are the matrices of the coefficients (tensor components) in non- linear expansion. All of the coefficients (tensor components) incorporated in equa- tions (2.6), (2.7) and (2.8), which occur on the right-hand side of table 1, are pre- sented in the form of matrix 10 × 62: (6 + 3 + 1) × (6 + 21 + 15 + 6 + 3 + 6 + 3 + 1 + 1) = 10 × 62. For linear effects we have matrix 10 × 10: (6 + 3 + 1) × (6 + 3 + 1) = 10 × 10. Matrix notation is clear and very convenient, and in its external form it is similar for all (eight) thermodynamic functions, which have been used to describe the physical quantities for piezoelectric crystals. Making use of the data reported in the litera- ture [1,3,5,13,14,15,16], we can establish the number of independent components of particular tensors for each point group, as well as define the relations between some elements of these matrices. References 1. Nye J.F. Physical Properties of Crystals. Oxford University Press, 1985. 2. Soluch W. // Wstȩp do Piezoelektroniki. Wydawnictwo Komunikacji i La̧czności, Warszawa, 1980 (in Polish). 3. Juretschke H.J. Crystal Physics. W.A. Benjamin, INC. Massachusetts, 1974. 4. Weber H.-J., Balashova E.V., Kizhaev S.A. // J. Phys.: Condens. Matter, 2000, vol. 12, p. 1485. 5. Fumi F.G., Ripamonti C. // Acta Cryst., 1980, vol. A36, p. 535. 6. Abrahams S.C. // Acta Cryst., 1994, vol. A50, p. 658. 344 Non-linear phenomena in piezoelectric crystals 7. Briss R.R. Symmetry and Magnetism. Amsterdam, North-Holland Publishing Co., 1966. 8. Wooster W.A. Tensors and Group Theory for the Physical Properties of Crystals. 1973. 9. Warkusz F. // Zeszyty Naukowe UO, Fizyka, 1997, vol. 27, p. 195 (in Polish). 10. Mason W.P. // Phys. Rev., 1952, vol. 88, p. 480. 11. Mason W.P. Crystal Physics of Interaction Processes. New York, London, Academic Press, 1966. 12. Parton V.Z., Kudryavtsev B.A. Electromagnetoelasticity of Piezoelectronics and Elec- trically Conductive Solids. Moscow, Nauka Publ., 1988 (in Russian); Electromagne- toelasticity: Piezoelectrics and Electrically Conductive Solids. Taylor & Francis, 1988 (English translation). 13. Fumi F.G. // Il Nuovo Cimento, 1952, vol. 9, p. 739. 14. Fieshi R., Fumi F.G. // Il Nuovo Cimento, 1953, vol. 10, p. 865. 15. Fumi F.G., Ripamonti C. // Acta Cryst., 1980, vol. A36, p. 551. 16. Fumi F.G. // Acta Cryst. 1997, vol. A53, p. 101. Нелінійні механічні, електричні та термічні явища в п’єзоелектричних кристалах Ф.Варкуш, А.Лінек Інститут фізики, університет м. Ополє, 45–052 Ополє, Польща Отримано 25 серпня 2002 р., в остаточному вигляді – 31 березня 2003 р. Механічні, електричні та термічні явища у п’єзоелектричних криста- лах вивчаються у нелінійному наближенні. З цією метою використа- но термодинамічний потенціал, який описує анізотропне тіло. Роз- глянуто потенціал Гіббса. Розрахунки охоплюють тензор деформа- ції εij = f(σkl, En, T ), вектор індукції Dm = f(σkl, En, T ) та ентропію S = f(σkl, En, T ) як функцію механічного напруження σkl, величини поля En і різниці температур T . Отримано рівняння, які описують анізотропні п’єзоелектричні тіла, якщо відомі “сили” σkl, En, T , що діють на кристал. Ключові слова: п’єзоелектричні кристали, термодинаміка, анізотропні тіла, тензори PACS: 65.40.-b, 77.65.-j, 77.65.Bn, 77.65.Ly, 05.70.Ce 345 346