Yukawa fluids: a new solution of the one component case

In recent work a solution of the Ornstein-Zernike equation for a general Yukawa closure for a single component fluid was found. Because of the complexity of the equations a simplifying assumption was made, namely that the main scaling matrix Γ had to be diagonal. While in principle this is mathe...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автори: Blum, L., Hernando, J.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2003
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120754
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Yukawa fluids: a new solution of the one component case / L. Blum, J.A. Hernando // Condensed Matter Physics. — 2003. — Т. 6, № 3(35). — С. 447-458. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In recent work a solution of the Ornstein-Zernike equation for a general Yukawa closure for a single component fluid was found. Because of the complexity of the equations a simplifying assumption was made, namely that the main scaling matrix Γ had to be diagonal. While in principle this is mathematically correct, it is not physical because it will violate symmetry conditions when different Yukawas are assigned to different components. In this work we show that by using the symmetry conditions the off diagonal elements of Γ can be computed explicitly for the case of two Yukawas solving a quadratic equation: There are two branches of the solution of this equation, and the physical one has the correct behavior at zero density. The non-physical branch corresponds to the solution of the diagonal approximation. Although the solution is different from the diagonal case, the excess entropy is formally the same as in the diagonal case.