Yukawa fluids: a new solution of the one component case
In recent work a solution of the Ornstein-Zernike equation for a general Yukawa closure for a single component fluid was found. Because of the complexity of the equations a simplifying assumption was made, namely that the main scaling matrix Γ had to be diagonal. While in principle this is mathe...
Збережено в:
Дата: | 2003 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2003
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/120754 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Yukawa fluids: a new solution of the one component case / L. Blum, J.A. Hernando // Condensed Matter Physics. — 2003. — Т. 6, № 3(35). — С. 447-458. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-120754 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1207542017-06-13T03:02:47Z Yukawa fluids: a new solution of the one component case Blum, L. Hernando, J.A. In recent work a solution of the Ornstein-Zernike equation for a general Yukawa closure for a single component fluid was found. Because of the complexity of the equations a simplifying assumption was made, namely that the main scaling matrix Γ had to be diagonal. While in principle this is mathematically correct, it is not physical because it will violate symmetry conditions when different Yukawas are assigned to different components. In this work we show that by using the symmetry conditions the off diagonal elements of Γ can be computed explicitly for the case of two Yukawas solving a quadratic equation: There are two branches of the solution of this equation, and the physical one has the correct behavior at zero density. The non-physical branch corresponds to the solution of the diagonal approximation. Although the solution is different from the diagonal case, the excess entropy is formally the same as in the diagonal case. В сучасних роботах знайдено розв’язок рівняння Орнштейна-Церніке для простого однокомпонентного плину в рамках узагальнених умов замикання Юкави. У зв’язку зі складністю рівнянь було зроблено припущення про те, що головна скейлінгова матриця Γ має бути діагональною. Хоча це математично правильно, фізично це порушує умови симетрії при співставлянні різних потенціалів Юкави різним компонентам. В цій роботі ми показуємо, що використовуючи умови симетрії, недіагональні елементи матриці Γ можуть бути точно обчислені, розв’язуючи квадратне рівняння для двох потенціалів Юкави. Існують два розв’язки цього рівняння, але тільки один з них має фізично правильну поведінку при нульовій густині. Нефізичний розв’язок відповідає розв’язку з діагональною апроксимацією. I хоча наш розв’язок відрізняється від того, що в діагональному випадку, надлишкова ентропія формально залишається такою ж. 2003 Article Yukawa fluids: a new solution of the one component case / L. Blum, J.A. Hernando // Condensed Matter Physics. — 2003. — Т. 6, № 3(35). — С. 447-458. — Бібліогр.: 20 назв. — англ. 1607-324X PACS: 61.20.Gy DOI:10.5488/CMP.6.3.447 http://dspace.nbuv.gov.ua/handle/123456789/120754 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In recent work a solution of the Ornstein-Zernike equation for a general
Yukawa closure for a single component fluid was found. Because of the
complexity of the equations a simplifying assumption was made, namely
that the main scaling matrix Γ had to be diagonal. While in principle this
is mathematically correct, it is not physical because it will violate symmetry
conditions when different Yukawas are assigned to different components.
In this work we show that by using the symmetry conditions the off diagonal
elements of Γ can be computed explicitly for the case of two Yukawas
solving a quadratic equation: There are two branches of the solution of this
equation, and the physical one has the correct behavior at zero density.
The non-physical branch corresponds to the solution of the diagonal approximation.
Although the solution is different from the diagonal case, the
excess entropy is formally the same as in the diagonal case. |
format |
Article |
author |
Blum, L. Hernando, J.A. |
spellingShingle |
Blum, L. Hernando, J.A. Yukawa fluids: a new solution of the one component case Condensed Matter Physics |
author_facet |
Blum, L. Hernando, J.A. |
author_sort |
Blum, L. |
title |
Yukawa fluids: a new solution of the one component case |
title_short |
Yukawa fluids: a new solution of the one component case |
title_full |
Yukawa fluids: a new solution of the one component case |
title_fullStr |
Yukawa fluids: a new solution of the one component case |
title_full_unstemmed |
Yukawa fluids: a new solution of the one component case |
title_sort |
yukawa fluids: a new solution of the one component case |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2003 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/120754 |
citation_txt |
Yukawa fluids: a new solution of the
one component case / L. Blum, J.A. Hernando // Condensed Matter Physics. — 2003. — Т. 6, № 3(35). — С. 447-458. — Бібліогр.: 20 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT bluml yukawafluidsanewsolutionoftheonecomponentcase AT hernandoja yukawafluidsanewsolutionoftheonecomponentcase |
first_indexed |
2025-07-08T18:31:25Z |
last_indexed |
2025-07-08T18:31:25Z |
_version_ |
1837104613851922432 |
fulltext |
Condensed Matter Physics, 2003, Vol. 6, No. 3(35), pp. 447–458
Yukawa fluids: a new solution of the
one component case
L.Blum 1 , J.A.Hernando 2
1 Department of Physics P.O. Box 23343, University of Puerto Rico,
Rio Piedras, PR 00931-3343, USA
2 Department of Physics, Comision Nacional de Energia Atomica,
Av. del Libertador 8250, 1429 Buenos Aires, Argentina
Received March 12, 2003, in final form June 23, 2003
In recent work a solution of the Ornstein-Zernike equation for a general
Yukawa closure for a single component fluid was found. Because of the
complexity of the equations a simplifying assumption was made, namely
that the main scaling matrix Γ had to be diagonal. While in principle this
is mathematically correct, it is not physical because it will violate symmetry
conditions when different Yukawas are assigned to different components.
In this work we show that by using the symmetry conditions the off diago-
nal elements of Γ can be computed explicitly for the case of two Yukawas
solving a quadratic equation: There are two branches of the solution of this
equation, and the physical one has the correct behavior at zero density.
The non-physical branch corresponds to the solution of the diagonal ap-
proximation. Although the solution is different from the diagonal case, the
excess entropy is formally the same as in the diagonal case.
Key words: Yukawa fluids, mean spherical approximation, entropy,
scaling approximations
PACS: 61.20.Gy
1. Introduction
There are many problems of practical and academic interest that can be formu-
lated as closures of either a scalar or matrix Ornstein-Zernike (OZ) equation. These
closures can always be expressed by a sum of exponentials, which do form a complete
basis set if we allow for complex numbers [1–5]. Another interesting application is
to fluids with non-spherical molecules, like water [6,7].
While the initial motivation was to study simple approximations like the Mean
Spherical (MSA) [8] or Generalized Mean Spherical Approximation (GMSA) [9–
13], the availability of closed form scaling solutions [14–16], an equation makes it
possible to write down analytical solutions for any given approximation that can be
c© L.Blum, J.A.Hernando 447
L.Blum, J.A.Hernando
formulated by writing the direct correlation function c(r) outside the hard core as
c(r) =
M
∑
n=1
K(n) e
−zn(r−σ)
r
=
M
∑
n=1
K(n) e
−znr
r
. (1)
In this equation K(n) is the interaction/closure constant used in the general solution
first found by Blum and Hoye (which we will call BH78) [17], while K(n) is the
definition used in the later general solution by Blum, Vericat and Herrera (BVH92
in what follows) [16]. In this work we will use the more common notation of BVH92.
The case of factored interactions discussed by Blum, [14,18] was simplified by Ginoza
[15,19,20] for the one Yukawa case.
We have
K(n) = K(n)δ(n)δ(n), K(n) = K(n)d(n)d(n), (2)
where
δ(n) = d(n)e−znσ/2. (3)
The general solution of this problem was formulated by Blum, Vericat and Her-
rera [16] in terms of a scaling matrix Γ. The full solution was recently given by Blum
et al. [1,2,4]. For only one component the matrix Γ was assumed to be diagonal and
explicit expressions for the closure relations for any arbitrary number of Yukawa
exponents M were obtained. Then, the solution is remarkably simple in the MSA
since explicit formulas for the thermodynamic properties are obtained.
The diagonal assumption is however not correct for mixtures, even if they are
of the same hard core diameter. It is also more natural to solve the full problem
with no diagonal assumption and compute the nondiagonal terms of the Γ matrix
using the symmetry relations: In this work we do precisely the following: the sym-
metry relations are used to calculate explicitly the off diagonal terms of Γ in the 1
component, 2 Yukawa case.
2. Summary of the previous work
We study the Ornstein-Zernike (OZ) equation
hij(12) = cij(12) +
∑
k
∫
d3hik(13)ρkckj(32), (4)
where hij(12) is the molecular total correlation function and cij(12) is the molecular
direct correlation function, ρi is the number density of the molecules i, and i = 1, 2
is the position ~ri, r12 = |~r1 − ~r2| and σij is the distance of the closest approach of
two particles (or species) i, j. The direct correlation function is
cij(r) =
M
∑
n=1
K
(n)
ij
e−zn(r−σij)
r
, r > σij , (5)
448
Yukawa fluids: a new solution of the one component case
and the pair correlation function is
hij(r) = gij(r) − 1 = −1, r 6 σij . (6)
We use the Baxter-Wertheim (BW) factorization of the OZ equation
[
I + ρH̃(k)
] [
I − ρC̃(k)
]
= I, (7)
where I is the identity matrix, and we have used the notation
H̃(k) = 2
∫
∞
0
dr cos(kr)J(r), (8)
C̃(k) = 2
∫
∞
0
dr cos(kr)S(r). (9)
The matrices J and S have matrix elements
Jij(r) = 2π
∫
∞
r
ds shij(s), (10)
Sij(r) = 2π
∫
∞
r
ds scij(s), (11)
[
I − ρC̃(k)
]
=
[
I − ρQ̃(k)
] [
I − ρQ̃T (−k)
]
, (12)
where Q̃T (−k) is the complex conjugate and transpose of Q̃(k). The first matrix is
non-singular in the upper half complex k-plane, while the second is non-singular in
the lower half complex k-plane.
It can be shown that the factored correlation functions must be of the form
Q̃(k) = I − ρ
∫
∞
λji
dreikrQ̃(r), (13)
where we used the following definitions
σji =
1
2
(σj + σi), λji =
1
2
(σj − σi), (14)
S(r) = Q(r) −
∫
dr1Q(r1)ρQ
T(r1 − r). (15)
Similarly, from equation (12) and equation (7) we get, using the analytical prop-
erties of Q and Cauchy’s theorem
J(r) = Q(r) +
∫
dr1J(r − r1)ρQ(r1). (16)
The general solution is discussed in [3,15,18], and yields
qij(r) = q0
ij(r) +
M
∑
n=1
D
(n)
ij e−znr, λji < r, (17)
449
L.Blum, J.A.Hernando
q0
ij(r) = (1/2)Aj[(r − σj/2)2 − (σi/2)2] + βj[(r − σj/2) − (σi/2)]
+
M
∑
n=1
C
(n)
ij e−znσj/2[e−zn(r−σj/2) − e−znσi/2], λji < r < σij. (18)
From here
X
(n)
i − σiφ0(znσi)Π
(n)
i = δ
(n)
i −
1
2
σiφ0(znσi)
∑
`
ρ`β
0
`X
(n)
` − σ3
i z
2
nψ1(znσi)∆
(n), (19)
or
∑
`
ρ`
{
−Ĵ
(n)
j` Π
(n)
` + Î
(n)
j` X
(n)
`
}
= δ
(n)
j . (20)
Here we use the notation of our previous work [3]
β0
` =
πσ`
∆
.
2.1. The Laplace transforms
From equation 16 we obtain the Laplace transform of the pair correlation function
2π
∑
`
g̃i`(s)[δ
Kr
`j − ρ`q̃`j(is)] = q̃0
ij
′(is), (21)
where
q̃0
ij
′(is) =
∫
∞
σij
dre−sr[q0
ij(r)]
′
=
[(
1 +
sσi
2
)
Aj + sβj
] e−sσij
s2
−
∑
m
zm
s+ zm
e−(s+zm)σijC
(m)
ij . (22)
The Laplace transform of equations (17) and (18) yields
esλji q̃ij(is) = σ3
i ψ1(sσi)Aj + σ2
i φ1(sσi)βj
+
∑
m
1
s + zm
[(C
(m)
ij +D
(m)
ij )e−zmλji − C
(m)
ij e−zmσjizmσiφ0(sσi)C
(m)
ij e−zmσji ]. (23)
This result will be used below.
Another important relation deduced from equation [21]by setting s = zn is
−Π
(n)
j =
∑
m
M̃nma
(m)
j , (24)
where
M̃nm =
1
zn + zm
∑
`
ρ`
[
X
(n)
` (zmX
(m)
` − Π
(m)
` ) +X
(m)
` Π
(n)
`
]
. (25)
450
Yukawa fluids: a new solution of the one component case
3. The general one component closure
The closure relation (BVH92 [16] ) is, for only one component
2πK(n)δ(n)
zn
+ a(n)I(n)
−
∑
m
1
zn + zm
ρa(n)a(m)
[
J (n)[Π(m) − zmX
(m)] − I(n)X(m)
]
= 0. (26)
This simplifies to
2πK(n)ρ[X (n)]2 + znρa
(n)X(n) +
∑
m
zn
zn + zm
[ρa(n)a(m)]
[
ρX (m)X(n)
]
= 0, (27)
which is the desired expression. This equation is in a more compact form [1]
2πρK(n)
[
X(n)
]2
+ znβ
(n)
[
1 +
∑
m
1
zn + zm
β(m)
]
= 0, (28)
where β(n) is
β(n) = ρX (n)a(n). (29)
4. Symmetry
In this section we will summarize and extend our previous analysis of the most
general scaling relation [16] for the multi Yukawa closure of the Ornstein Zernike
equation. We have
Π
(n)
i = −
∑
m
ΓnmX
(m)
i (30)
where Γmn is the M ×M matrix of scaling parameters. This matrix is not uniquely
defined by the MSA closure relations and must be supplemented by M(M−1) equa-
tions obtained from symmetry requirements for the correlations. From the symmetry
of the direct correlation function at the origin, equation (15)
qij(λji) = qji(λij), (31)
we write
a
(n)
i =
∑
m
ΛnmX
(m)
i , (32)
where, as was shown in reference [16], Λ must be a symmetric matrix.
From the symmetry of the contact pair correlation function equation (16) we get
{gij(σij) = gji(σij)} =⇒ {qij(σij)
′ = qji(σij)
′}, (33)
which are
∑
n
(Π
(n)
i − znX
(n)
i )a
(n)
j =
∑
n
(Π
(n)
j − znX
(n)
j )a
(n)
i , (34)
451
L.Blum, J.A.Hernando
from which we get the scaling relation
Π
(n)
i − znX
(n)
i =
∑
m
Υnma
(m)
i , (35)
and a new set of M(M − 1)/2 symmetry relations
Υmn = Υnm. (36)
Furthermore, using the scaling relations we get
M̃ · Λ = Γ, (37)
where the matrix M̃ (see equation [25])has elements
[M̃]nm =
1
zn + zm
∑
`
ρ`
[
X
(n)
` {zmX
(m)
` − Π
(m)
` } +X
(m)
` Π
(n)
`
]
. (38)
Solving these equations yields the relations
M̃−1 · Γ = Λ (39)
and
−
(
I + z · Γ−1
)
· M̃ = Υ. (40)
Both Υ and Λ must be symmetric matrices. We have, therefore, a total of M(M−1)
symmetry relations, which together with the M closure equations give the required
equations for the M 2 elements of the matrix Γ.
The symmetry requirements are more explicit
Γ · M̃T = M̃ · ΓT M̃T ·
[
ΓT
]
−1
= Γ−1 · M̃ SI (41)
and
(
I + z · Γ−1
)
· M̃ = M̃T ·
(
I + [Γ−1]T · z
)
SII (42)
the matrix M̃ as
M̃ =
1
2
D̃ +
1
2
M̃A (43)
and
[M̃A]nm =
−1
snm
∑
`
ρ`
[
X
(n)
` (zmX
(m)
` − 2Π
(m)
` ) − (znX
(n)
` − 2Π
(n)
` )X
(m)
`
]
=
−1
zn + zm
∑
p
ρ
[
X(n)X(p)(zmδ
Kr
pm + 2Γmp) − (znδ
Kr
pn + 2Γnp)X
(m)X(p)
]
, (44)
[M̃A]nm = −X (n)X(m) [γnm + αnm] , (45)
where
αnm = −
2ρ
zn + zm
∑
p
[
Γmp
X(p)
X(m)
− Γnp
X(p)
X(n)
]
, (46)
and
γnm =
2Γ(nn) + zn − 2Γ(mm) − zm
zm + zn
. (47)
The second symmetry condition in equation (42) is
M̃A = Γ−1 · M̃ · z − z · M̃T · [ΓT ]−1. (48)
452
Yukawa fluids: a new solution of the one component case
5. The two-Yukawa case: symmetric matrix results
We write equation (24) in matrix form [1]
−~Πi = M̃ · ~ai (49)
where
~Xi =
[
X
(1)
i
X
(2)
i
]
, ~Πi =
[
Π
(1)
i
Π
(2)
i
]
, ~ai =
[
a
(1)
i
a
(2)
i
]
. (50)
Using the symmetry relation equation (41) we get
(
Γ(12)X
(2)
X(1)
− Γ(21)X
(1)
X(2)
)
=
s12
2
[χ12 − γ12] (51)
with
χ12 =
z1 − z2
z1 + z2 + 2 Γ(11) + 2 Γ(22)
, (52)
γ12 =
z1 − z2 + 2 Γ(11) − 2 Γ(22)
z1 + z2
, (53)
in equation (45) we can write
M̃ =
ρ
2
[
X(1) 0
0 X(2)
] [
1 1 − χ12
1 + χ12 1
] [
X(1) 0
0 X(2)
]
. (54)
We rewrite equation (49) as
2
[
G(1)
G(2)
]
=
[
1 1 − χ12
1 + χ12 1
] [
β(1)
β(2)
]
. (55)
Here we have defined
G(1) = Γ(11) +
X(2)
X(1)
Γ(12), G(2) = Γ(22) +
X(1)
X(2)
Γ(21). (56)
If we also define
2G(s) = G(1) + G(2), 2G(12) = G(1) − G(2), (57)
then we can solve equation (55)
2G(s) = 2βs + β12χ12, 2G(12) = −βsχ12, (58)
or
βs = −2
G(12)
χ12
, β12 =
2
χ12
[
G(s) +
G(12)
χ12
]
. (59)
453
L.Blum, J.A.Hernando
From the second symmetry condition equation (60) we get
X(2)
X(1)
z1Γ
(12) −
X(1)
X(2)
z2Γ
(21) − 2Γ(12)Γ(21)χ12 + 2τ12 = 0, (60)
where
τ12 =
(
z2Γ
(11)(z1 + Γ(11)) − z1Γ
(22)(z2 + Γ(22))
z1 + z2 + 2 Γ(11) + 2 Γ(22)
)
. (61)
We also remark that
τ12 =
1
2
[z2Γ
(11)(1 + χ12) − z1Γ
(22)(1 − χ12)] + χ12Γ
(11)Γ(22), (62)
in equation (60) we get
X(2)
X(1)
z1Γ
(12) −
X(1)
X(2)
z2Γ
(21) + 2χ12DΓ
+ [z2Γ
(11)(1 + χ12) − z1Γ
(22)(1 − χ12)] = 0. (63)
Using now equation (51)
X2
2
X2
1
Γ2
12 −
X2
X1
Γ12
[s12χ12
2
+ z2 + 2Γ(22)
]
+ Γ(22)(z2 + Γ(22)) = 0, (64)
and
X2
1
X2
2
Γ2
21 −
X1
X2
Γ21
[
−
s12χ12
2
+ z1 + 2Γ(11)
]
+ Γ(11)(z1 + Γ(11)) = 0, (65)
from where
G(1) =
1
2
[{
s12χ12
2
+
z12
χ12
}
− z1 −
√
∆
(2)
Γ
]
, (66)
G(2) =
1
2
[{
−
s12χ12
2
+
z12
χ12
}
− z2 −
√
∆
(1)
Γ
]
, (67)
with
∆
(2)
Γ = z2
2 + s12χ12
[s12χ12
4
+ z2 + 2Γ(22)
]
, (68)
∆
(1)
Γ = z2
1 + s12χ12
[s12χ12
4
− z1 − 2Γ(11)
]
, (69)
[
2G(1) −
{s12
2
+ z12
}
χ12 + z1
]2
−
[
2G(2) −
{
−
s12
2
+ z12
}
χ12 + z2
]2
=
= ∆
(2)
Γ − ∆
(1)
Γ = 0. (70)
From here we get the equation
{
χ12 −
2z12
s12 + 2Gs
}{
χ12 −
z12 + 2G(12)
s12
}
= 0, (71)
454
Yukawa fluids: a new solution of the one component case
which yields the two solutions
χ12 =
2z12
s12 + 2Gs
(A), χ12 =
z12 + 2G(12)
s12
(B). (72)
Notice first that in the zero density limit we get
χ12 =⇒
2z12
s12
, χ12 =⇒
z12
s12
, (73)
and then in equations (66) and (67) we get the correct zero density limit only from
the choice (B)
G(1) '
1
2
[{z12
2
+ s12
}
− z1 −
s12
2
]
= 0, (74)
G(2) '
1
2
[{
−
z12
2
+ s12
}
− z2 −
s12
2
]
= 0. (75)
Then
βs = −2G(12) s12
(z12 + 2G(12))
,
β12 = 2
s12
(z12 + 2G(12))
[
G(s) +
2G(12)s12
(z12 + 2G(12))
]
. (76)
These expressions turn out to be identical to those derived by Blum and Ubriaco
using the diagonal approximation [2].
6. Thermodynamics by parameter integration
We will use the notation and the results of Blum and Hernando [3]. We recall
that
J (n)Π(n) = I(n)X(n) − δ(n). (77)
Remember that
X(n) = γ(n) + Ĵ (n)B̂(zn). (78)
Here
Ĵ (n) = σφ0(znσ) − 2ρβ0σ3ψ1(zn), (79)
and
γ̂(n) = δ(n) −
2β0
z2
n
ρδ(n)(1 +
znσ
2
). (80)
The total excess internal energy is
E(β)
kTV
=
∑
n
K(n)
{
ρδ(n)B̂(n)
}
. (81)
From equation (30) we show that
−Π(n) = G(n)X(n), (82)
455
L.Blum, J.A.Hernando
where G(n) is a (generally algebraic) function of the coefficients β ≡ {β1, β2, · · ·}. In
fact in equation (77)
δ(n) =
∑
m
[Mnm]X(m)
=
∑
m
{I(n)δKr
nm + J (n)Γ(nm)}X (m)
= I(n)X(n) + J (n)
∑
m
Γ(nm)}X (m)
= {I(n) + J (n)G(n)}X (n) (83)
with
G(n) =
∑
m
Γ(nm)X
(m)
X(n)
. (84)
For the 1 component case we get
X(n) =
δ(n)
I(n) + G(n)J (n)
. (85)
Then, since the “charge” parameters are constants at constant temperature, the
derivative of B̂(n) with respect to the scaling parameter G(n) is
[
∂B̂(n)
∂G(n)
]
=
[
J (n)
]−1
{
∂
(
X(n)
)
∂G(n)
}
= −
[
J (n)
]−1
[
δ(n)J (n)
(I(n) + G(n)J (n))2
]
, (86)
where we use the fact that J (n) is independent of G(n). The desired energy derivative
equation (81) is
∂E
∂G(n)
= −ρ[X (n)]2 (87)
or
∂E
∂G(s)
= −
∑
n
ρ[X (n)]2,
∂E
∂G(nm)
= −ρ{[X (n)]2 − [X (m)]2}. (88)
The integrability condition is satisfied since
∂2E
∂G(n)∂G(m)
=
∂2E
∂G(m)∂G(n)
= δKr
nm
[
2ρ[X (n)]2
J (n)
I(n) + G(n)J (n)
]
. (89)
Now we use equation (29) to obtain
∂E
∂G(s)
=
1
2
[
β2
s + s12βs + z12β12
]
=
s12z12
2(2G(12)+z12)
[
2G(s) + s12 −
s12z12
(2G(12)+z12)
]
(90)
456
Yukawa fluids: a new solution of the one component case
and
∂E
∂G(12)
=
1
2
[
βs(βs + s12) + z12βs +
z12
2s12
{β2
s − β2
12}
]
=
s12z12
4(2G(12) + z12)2
[
s2
12 + z2
12 −
{
2G(s) + s12 −
2s12z12
(2G(12) + z12)
}2
]
−
s12z12
4
. (91)
Thermodynamic integration of these equations leads to
−
2π
k
∆S =
(
1
8
s12z12
(z12 + 2G(12))
)3
{
1
3
+
(
1 −
(z12 + 2G(12))(s12 + 2G(s))
s12z12
)2
}
−
(s12z12
8
)
(
s2
12 + z2
12
(z12 + 2G(12))
− z12 + 2G(12)
)
+
s3
12
12
, (92)
∆S = −
k
2π
[
β3
s
6
+
βs
4
[(βss12 + β12z12] −
z2
12(β
2
s − β2
12)
8(βs + s12)
]
. (93)
An interesting point here is that this expression is correct in the zero density limit
without any further adjustement. As was shown by Lin et al. [13], the result ob-
tained directly from the diagonal assumption [2] does not automatically satisfy this
requirement, and the reason for this is that the wrong branch of the solution is used
in this approximation.
Acknowledgements
The authors thank Yurij Kalyuzhnij for his careful proofreading of the
manuscript.
References
1. Blum L., Herrera J.N. // Mol. Phys., 1999, vol. 96, p. 821.
2. Blum L., Ubriaco M. // Mol. Phys., 2000, vol. 98, p. 829.
3. Blum L., Hernando J.A. // J. Phys.: Cond. Matt., 2002, vol. 14, p. 10933.
4. Blum L., Herrera J.N. // Mol. Phys., 1998, vol. 95, p. 425.
5. Blum L., Hernando J.A. Condensed Matter Theories. (Hernandez S., Clark J.W. edi-
tors). New York, Nova Publishers, 2001, vol. 16, p. 411.
6. Blum L., Vericat F., Degreve L. // Physica A, 1999, vol. 265, p. 396.
7. Blum L., Vericat F. // J. Phys. Chem., 1996, vol. 100, p. 1197.
8. Waisman E. // Mol. Phys., 1973, vol. 25, p. 45.
9. Waisman E., Stell G., Høye J.S. // Chem. Phys. Letters, 1976, vol. 40, p. 3253.
10. Arrieta E., Jedrzejek C., Marsh K.N. // J. Chem. Phys., 1987, vol. 86, p. 3606.
11. Herrera J.N., Blum L., Garćıa-Llanos E. // J. Chem. Phys., 1996, vol. 105, p. 9606.
12. Høye J.S., Stell G. // J. Chem. Phys., 1980, vol. 89, p. 461.
13. Lin Y.Z., Li Y.G., Lu Y.F., Liu Z.P. // Mol. Phys., 2002, vol. 100, p. 3251.
457
L.Blum, J.A.Hernando
14. Blum L. // Mol. Phys., 1975, vol. 30, p. 1529.
15. Ginoza M. // J. Phys. Soc. Japan, 1986, vol. 55, p. 95,1782.
16. Blum L., Vericat F., Herrera J.N. // J. Stat. Phys., 1992, vol. 66, p. 249.
17. Blum L., Høye J.S. // J. Stat. Phys., 1978, vol. 19, p. 317.
18. Blum L. // J. Stat. Phys., 1980, vol. 22, p. 661.
19. Ginoza M. // Mol. Phys., 1990, vol. 71, p. 145.
20. Ginoza M., Yasutomi M. // J. Stat. Phys., 1998, vol. 90, p. 1475.
Плин Юкави: новий розв’язок однокомпонентного
випадку
Л.Блюм 1 , Дж.А.Ернандо 2
1 Фізичний факультет, Університет Пуерто-Рiко,
Ріо Пієдрас, PR 00931-3343, США
2 Фізичний факультет, Національна Рада ядерної енергетики,
просп. дель Лібертадор, 8250, 1429 Буенос-Айрес, Аргентина
Отримано 12 березня 2003 р., в остаточному вигляді –
23 липня 2003 р.
В сучасних роботах знайдено розв’язок рівняння Орнштейна-Церні-
ке для простого однокомпонентного плину в рамках узагальнених
умов замикання Юкави. У зв’язку зі складністю рівнянь було зроб-
лено припущення про те, що головна скейлінгова матриця Γ має
бути діагональною. Хоча це математично правильно, фізично це по-
рушує умови симетрії при співставлянні різних потенціалів Юкави
різним компонентам. В цій роботі ми показуємо, що використовую-
чи умови симетрії, недіагональні елементи матриці Γ можуть бути
точно обчислені, розв’язуючи квадратне рівняння для двох потенці-
алів Юкави. Існують два розв’язки цього рівняння, але тільки один з
них має фізично правильну поведінку при нульовій густині. Нефізич-
ний розв’язок відповідає розв’язку з діагональною апроксимацією.
I хоча наш розв’язок відрізняється від того, що в діагональному ви-
падку, надлишкова ентропія формально залишається такою ж.
Ключові слова: плин Юкави, середньо-сферичне наближення,
ентропія, скейлінгове наближення
PACS: 61.20.Gy
458
|