Quantum anharmonic crystal in functional integral approach
A lattice model of interacting light quantum particles of mass m oscillating in a crystalline field is considered in the framework of an approach based on functional integrals. The main aspects of this approach are described on an introductory level. Then a mechanism of the stabilization of this...
Збережено в:
Дата: | 2003 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2003
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/120759 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Quantum anharmonic crystal in functional integral approach / Yu. Kondratiev , Yu. Kozitsky , T. Pasurek , M.R. Ockner // Condensed Matter Physics. — 2003. — Т. 6, № 4(36). — С. 647-674. — Бібліогр.: 42 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | A lattice model of interacting light quantum particles of mass m oscillating
in a crystalline field is considered in the framework of an approach based
on functional integrals. The main aspects of this approach are described on
an introductory level. Then a mechanism of the stabilization of this model
by quantum effects is suggested. In particular, a stability condition involving
m , the interaction intensity, and the parameters of the crystalline field
is given. It is independent of the temperature and is satisfied if m is small
enough and/or the tunnelling frequency is big enough. It is shown that under
this condition the infinite-volume correlation function decays exponentially;
hence, no phase transitions can arise at all temperatures |
---|