A current algebra approach to the equilibrium classical statistical mechanics and its applications

The non-relativistic current algebra approach is analyzed subject to its application to studying the distribution functions of many-particle systems at the temperature equilibrium and their stability properties. We show that the classical Bogolubov generating functional method is a very effective to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
Hauptverfasser: Bogolubov, N., Prykarpatsky, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2013
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/120805
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A current algebra approach to the equilibrium classical statistical mechanics and its applications / N. Bogolubov, A. Prykarpatsky // Condensed Matter Physics. — 2013. — Т. 16, № 2. — С. 23702:1-13. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The non-relativistic current algebra approach is analyzed subject to its application to studying the distribution functions of many-particle systems at the temperature equilibrium and their stability properties. We show that the classical Bogolubov generating functional method is a very effective tool for constructing the irreducible current algebra representations and the corresponding different generalized measure expansions including collective variables transform. The effective Hamiltonian operator construction and its spectrum peculiarities subject to the stability of equilibrium many-particle systems are discussed.