Study of the phase transition in polycrystalline (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃

Polycrystalline sample of (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃ was obtained by means of a conventional ceramic technology. The dielectric measurements were performed depending on temperature and frequency of electric measuring field. The character of the phase transitions of (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Kajtoch, C., Bąk, W., Garbarz-Glos, B.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2013
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120839
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Study of the phase transition in polycrystalline (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃ / C. Kajtoch, W. Bąk, B. Garbarz-Glos// Condensed Matter Physics. — 2013. — Т. 16, № 3. — С. 31702:1-5. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-120839
record_format dspace
spelling irk-123456789-1208392017-06-14T03:04:11Z Study of the phase transition in polycrystalline (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃ Kajtoch, C. Bąk, W. Garbarz-Glos, B. Polycrystalline sample of (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃ was obtained by means of a conventional ceramic technology. The dielectric measurements were performed depending on temperature and frequency of electric measuring field. The character of the phase transitions of (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃ ceramics strongly depends on the presence of Pb in the sample. The obtained results pointed out the diffused character of phase transition. The temperature dependence of the dielectric properties showed that the phase transition from the paraelectric phase to ferroelectric one takes place at the same temperature (Tm=367 K). It does not depend on the frequency of the measuring electric field. A change of the value of the parameter γ takes place in the paraelectric phase. Полiкристалiчний зразок (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃ отриманий за допомогою стандартної керамiчної технологiї. Дiелектричнi вимiрювання здiйсненi в залежностi вiд температури i частоти електричного ви-мiрюючого поля. Характер фазових переходiв керамiк (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃ сильно залежить вiд присутностi Pb в зразку. Отриманi результати вказують на дифузiйний характер фазового переходу. Температурна залежнiсть дiелектричних властивостей показала, що фазовий перехiд з параелектричної до сегнетоелектричної фази має мiсце при тiй самiй температурi (Tm Æ 367 K). Вона не залежить вiд частоти вимiрюючого електричного поля. Змiна значення параметра має мiсце в параелектричнiй фазi. 2013 Article Study of the phase transition in polycrystalline (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃ / C. Kajtoch, W. Bąk, B. Garbarz-Glos// Condensed Matter Physics. — 2013. — Т. 16, № 3. — С. 31702:1-5. — Бібліогр.: 19 назв. — англ. 1607-324X PACS: 77.84.-s, 81.05.Je, 77.80.B, 77.90.+k DOI:10.5488/CMP.16.31702 arXiv:1309.6088 http://dspace.nbuv.gov.ua/handle/123456789/120839 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Polycrystalline sample of (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃ was obtained by means of a conventional ceramic technology. The dielectric measurements were performed depending on temperature and frequency of electric measuring field. The character of the phase transitions of (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃ ceramics strongly depends on the presence of Pb in the sample. The obtained results pointed out the diffused character of phase transition. The temperature dependence of the dielectric properties showed that the phase transition from the paraelectric phase to ferroelectric one takes place at the same temperature (Tm=367 K). It does not depend on the frequency of the measuring electric field. A change of the value of the parameter γ takes place in the paraelectric phase.
format Article
author Kajtoch, C.
Bąk, W.
Garbarz-Glos, B.
spellingShingle Kajtoch, C.
Bąk, W.
Garbarz-Glos, B.
Study of the phase transition in polycrystalline (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃
Condensed Matter Physics
author_facet Kajtoch, C.
Bąk, W.
Garbarz-Glos, B.
author_sort Kajtoch, C.
title Study of the phase transition in polycrystalline (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃
title_short Study of the phase transition in polycrystalline (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃
title_full Study of the phase transition in polycrystalline (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃
title_fullStr Study of the phase transition in polycrystalline (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃
title_full_unstemmed Study of the phase transition in polycrystalline (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃
title_sort study of the phase transition in polycrystalline (ba₀.₉₀pb₀.₁₀)(ti₀.₉₀sn₀.₁₀)o₃
publisher Інститут фізики конденсованих систем НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/120839
citation_txt Study of the phase transition in polycrystalline (Ba₀.₉₀Pb₀.₁₀)(Ti₀.₉₀Sn₀.₁₀)O₃ / C. Kajtoch, W. Bąk, B. Garbarz-Glos// Condensed Matter Physics. — 2013. — Т. 16, № 3. — С. 31702:1-5. — Бібліогр.: 19 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT kajtochc studyofthephasetransitioninpolycrystallineba090pb010ti090sn010o3
AT bakw studyofthephasetransitioninpolycrystallineba090pb010ti090sn010o3
AT garbarzglosb studyofthephasetransitioninpolycrystallineba090pb010ti090sn010o3
first_indexed 2025-07-08T18:42:43Z
last_indexed 2025-07-08T18:42:43Z
_version_ 1837105326350925824
fulltext Condensed Matter Physics, 2013, Vol. 16, No 3, 31702: 1–5 DOI: 10.5488/CMP.16.31702 http://www.icmp.lviv.ua/journal Proceedings Paper Study of the phase transition in polycrystalline (Ba0.90Pb0.10)(Ti0.90Sn0.10)O3 C. Kajtoch∗, W. Bąk, B. Garbarz-Glos Institute of Physics, Pedagogical University, 2 Podchorążych St., 30–084 Kraków, Poland Received October 23, 2012, in final form November 9, 2012 Polycrystalline sample of (Ba0.90Pb0.10)(Ti0.90Sn0.10)O3 was obtained by means of a conventional ceramic tech-nology. The dielectric measurements were performed depending on temperature and frequency of electric measuring field. The character of the phase transitions of (Ba0.90Pb0.10)(Ti0.90Sn0.10)O3 ceramics strongly de-pends on the presence of Pb in the sample. The obtained results pointed out the diffused character of phase transition. The temperature dependence of the dielectric properties showed that the phase transition from the paraelectric phase to ferroelectric one takes place at the same temperature (Tm = 367 K). It does not depend on the frequency of the measuring electric field. A change of the value of the parameter γ takes place in the paraelectric phase. Key words: dielectric properties, phase transition, polar regions, ceramics PACS: 77.84.-s, 81.05.Je, 77.80.B, 77.90.+k 1. Introduction Among a number of well-known ferroelectric materials, barium titanate BT (ABO3-type compoundswith perovskite structure) and some of its solid solutions are the most interesting due to their excel- lent dielectric properties. BaTiO3 in its pure form does not have ideal properties for industrial appli-cations. The one that has such properties is a barium lead stannate titanate solid solution. The Pb- substitution at Ba-site is an effective way to improve dielectric properties. A great attention is focussed on Ba(Ti1−xSnx )O3 and (Ba1−xPbx )TiO3 solid solutions, which are the most useful material for many ap-plications and have been extensively investigated, particularly their phase transitions [1–8]. It was found that barium stannate titanate ceramics Ba(Ti1−xSnx )O3 exhibits many exceptional material propertiesand has a large range of applications as a ceramic capacitor, PTCR thermistor, piezoelectric transduc- ers and actuators [9, 10]. The paper presents the results of measurements of dielectric properties of (Ba0.90Pb0.10)(Ti0.90Sn0.10)O3 ceramics. 2. Experimental The (Ba0.90Pb0.10)(Ti0.90Sn0.10)O3 (abbreviated to BP10TS10) polycrystalline sample was prepared bya solid state synthesis. The sample was synthesized from analytically pure: BaC2O4, PbC2O4, TiO2 andSnO2. The raw materials in an appropriate molar ratio were ground and mixed in ether, then dried andcold pressed. After the calcination at the temperature of 1250 K and after re-milling, the BP10TS10 sample was sintered at the temperature of 1600 K for 2 hours. A sample in the shape of disc-pellets sized 10 mm (diameter) and 1.50 mm thick was painted with silver electrodes. ∗E-mail: ckajtoch@up.krakow.pl © C. Kajtoch, W. Bąk, B. Garbarz–Glos, 2013 31702-1 http://dx.doi.org/10.5488/CMP.16.31702 http://www.icmp.lviv.ua/journal C. Kajtoch, W. Bąk, B. Garbarz-Glos The measurements were performed automatically using a LCR Agilent 4284A meter and a tempera- ture control system Quatro Krio 4.0 with and BDS 1100 cryostat. The research was done in the frequency range from 20 Hz to 1 MHz under cooling process at rate 2 K/min. 3. Results and discussion The real part of the electric permittivity dependence on temperature ε′(T ) for BP10TS10 sample is presented in figure 1. For all frequencies of the electric field, the maximum value of the electric permit- tivity ε′ decreased, and the temperature of the maximum (Tm) did not change Tm = 367 K. The broadening of the temperature range of the phase transition was also observed, which is con- nected with the degree of freezing clusters during the transition from paraelectric to ferroelectric phase in the cooling process. This behavior indicates a diffusive nature of the phase transition. Figure 2 shows the temperature dependence of dielectric loss tanδ during the cooling process. The dielectric loss tangent exhibits a local anomaly in the vicinity of the temperature of 367 K, which cor- responds to the temperature Tm. The analysis of figure 2 shows that the local maxima appear for allfrequencies tested. The effective polarization changes, thermally induced and described as the ε′ fast increase can be also described by means of an electric modulus M ′ (M∗ = M ′+M ′′) dependence on temperature T . The modulusM ′ is sensitive to the small changes of local polarization. The minima position in theM ′(T ) curve can be interpreted as temperature points representing tran- sitions from one phase to another. Figure 3 presents the temperature dependence of the real part of electric modulus (M ′). In the paraelectric phase, the nonlinear dependence was observed, which indicates a diffusive nature of paraelectric-ferroelectric (PE-FE) phase transition. One of the special properties of ferroelectric ceramics is the diffuseness of the phase transition (dif- fuse phase transition—DPT). It means that the phase transition does not take place in thewhole specimen volume at a strictly determined Curie temperature TC (point phase transition), but in a certain temper-ature zone (the so-called the Curie zone). Two structural phases, one with lower and one with higher symmetry, coexist in this zone, namely ferroelectric (low temperature phase) and paraelectric (high tem- perature phase). The phenomenon of the diffuseness of the ferroelectric phase transition has been discov- ered in both ceramic materials and crystals and a lot of papers are devoted to this phenomenon including the physical nature, causes, criteria and the evaluation of the degree of diffuseness [11–16]. The following formula describes ferroelectric materials with diffusive phase transition (DPT): ε−1 = ε−1 m + A(T −Tm)γ , Figure 1. The dependence of the real part of electric permittivity ε′ on temperature for the BP10TS10 sample. Figure 2. The dependence of the dielectric loss (tanδ) on temperature for the BP10TS10. 31702-2 Phase transition in (Ba0.90Pb0.10)(Ti0.90Sn0.10)O3 Figure 3. The dependence of the real part of electric modulus (M ′) on temperature for the BP10TS10 sample. Figure 4. The dependence of log(ε−1 − ε−1 m ) on log(T −Tm) for the BP10TS10 sample. where: εm is the maximum value of electric permittivity; Tm is the temperature value at εm; A and γ are constants for the chosen frequency. In DPT, the value of γ is close to 2 while for a sharp transition, this value is close to 1. The values that follow from the above formula are presented in figure 4 as a dependence of log(ε−1 −ε−1 m ) on log(T −Tm). The analysis of the obtained results indicates two temperature regions with values γ1 and γ2. Thevalues of these parameters are 1.66 and 1.24, respectively. The change of the value of γ takes place in the region of the Burns temperature TB = 392 K. This temperature is about 25 K higher than the temperature of phase transition Tm. The value of γ1 is close to 2 and suggests the behaviour of ferroelectrics with DPT.The value of γ2 is close to unity and indicates a typical behavior for ferroelectrics with a sharp phasetransition at temperatures T > TB.Figure 5 presents the temperature changes of the real part of electric conductivity σ′. The (lnσ′)(1/T ) curve shows that the local maximum of a.c. conductivity occurs at the temperature Tm. Moreover, in thephase transition region, a PTCR effect is observed. The low values of phase angle φ in the investigated temperature range (figure 6) suggest the existence of polar regions [17, 18], which contribute to the dipolar polarization [19]. The changes of cluster configuration leads to their liability and sensitivity to the applied electric field. An increase of the value of the phase angle at higher temperatures testifies to freeing the charges [6, 10, 18] and leads to an increase of electric conductivity. Figure 5. The ac-conductivity (σ′) dependence on reciprocal temperature (1000/T ) for the BP10TS10 sample. Figure 6. The dependence of phase angle (φ) on temperature for the BP10TS10 sample. 31702-3 C. Kajtoch, W. Bąk, B. Garbarz-Glos 4. Conclusions The dielectric studies show that the value of electric permittivity of (Ba0.90Pb0.10)(Ti0.90Sn0.10)O3 de-creases with an increase of frequency in the whole investigated temperature range. The maximum of electric permittivity ε′ is observed in the cooling process at a temperature of 367 K (Tm). It was confirmedthat the Tm does not depend on the frequency of the measuring electric field. The obtained dielectric datasuggest a diffuse character of the phase transition. The substitution of lead for barium in the amount of 10% in the BP10TS10 ceramics compensates the effect of tin on the temperature of the PE-FE phase tran- sition and provides high values of electric permittivity ε′. The occurrence of a Pb positional fluctuation in the paraelectric phase is typically considered as a formation of polar regions. The substitution of Pb for Ba causes a local distortion of the lattice structure, resulting in a change of the electrostatic forces (the long and short range). The change of the value of the parameter γ in the paraelectric phase suggests a typical behavior for ferroelectrics with a sharp phase transition at temperatures T > TB. The effect of differencesin the values of ionic radii and the deformation of a unit cell are reduced at these temperatures. Due to the existence of a PTCR effect in this compound, it can be used as a material for thermistors. The obtained material is expected to be a promising candidate for electronic ceramics. References 1. Kajtoch C., Influence of Sn substitution on the phase transformations of barium titanate stannate, Dissertation, Halle-Wittenberg, 1990. 2. Mueller V., Jaeger L., Beige H., Abicht H.P., Mueller T., Solid State Comm., 2004, 129, 757–760; doi:10.1016/j.ssc.2003.12.035. 3. Cross L.E., Ferroelectrics, 1994, 151, 305–320; doi:10.1080/00150199408244755. 4. Kajtoch C., Ceram. Int., 2009, 35, 2993–2997; doi:10.1016/j.ceramint.2009.04.005. 5. Kajtoch C., Ferroelectrics, 1997, 192, 335–337; doi:10.1080/00150199708216208. 6. Kajtoch C., Ferroelectrics Lett., 1999, 25, 81–85; doi:10.1080/07315179908204587. 7. Sumang R., Bongkarn T., Ferroelectrics, 2009, 383, 57–64; doi:10.1080/00150190902873501. 8. Xing X., Deng J., Zhu Z., Liu G., J. Alloy. Compd., 2003, 353, 1–4; doi:10.1016/S0925-8388(02)01178-7. 9. Heywang W., Solid State Electron., 1961, 3, 51–55; doi:10.1016/0038-1101(61)90080-6. 10. Ravez J., Simon A., J. Solid State Chem., 2001, 162, 260–265; doi:10.1006/jssc.2001.9285. 11. Smolenskii G.A., J. Phys. Soc. Jpn. Suppl., 1970, 28, 26–37. 12. Setter N., Cross L.E., J. Appl. Phys., 1980, 51, 4356–4360; doi:10.1063/1.328296. 13. Setter N., Cross L.E., J. Mater. Sci., 1982, 15, 2478–2482; doi:10.1007/BF00550750. 14. Uchino K., Nomura S., Ferroelectrics Lett., 1982, 44, 55–61; doi:10.1080/00150198208260644. 15. Isupov V.A., Ferroelectrics, 1989, 90, 113–118; doi:10.1080/00150198908211278. 16. Santos A., Eiras J.A., J. Phys.: Condens. Matter, 2001, 13, 11733–11740; doi:10.1088/0953-8984/13/50/333. 17. Kajtoch C., Ceram. Int., 2011, 37, 387–391; doi:10.1016/j.ceramint.2010.07.006. 18. Ichinose N., Yokomizo Y., Takahashi T., Acta Crystallogr., Sect. A: Found. Crystallogr., 1972, 28 (Suppl.), 187–190. 19. Burns G., Dacol F.H., Solid State Comm., 1982, 42, 9–12; doi:10.1016/0038-1098(82)91018-3. 31702-4 http://dx.doi.org/10.1016/j.ssc.2003.12.035 http://dx.doi.org/10.1080/00150199408244755 http://dx.doi.org/10.1016/j.ceramint.2009.04.005 http://dx.doi.org/10.1080/00150199708216208 http://dx.doi.org/10.1080/07315179908204587 http://dx.doi.org/10.1080/00150190902873501 http://dx.doi.org/10.1016/S0925-8388(02)01178-7 http://dx.doi.org/10.1016/0038-1101(61)90080-6 http://dx.doi.org/10.1006/jssc.2001.9285 http://dx.doi.org/10.1063/1.328296 http://dx.doi.org/10.1007/BF00550750 http://dx.doi.org/10.1080/00150198208260644 http://dx.doi.org/10.1080/00150198908211278 http://dx.doi.org/10.1088/0953-8984/13/50/333 http://dx.doi.org/10.1016/j.ceramint.2010.07.006 http://dx.doi.org/10.1016/0038-1098(82)91018-3 Phase transition in (Ba0.90Pb0.10)(Ti0.90Sn0.10)O3 Вивчення фазового переходу в полiкристалiтах (Ba0.90Pb0.10)(Ti0.90Sn0.10)O3 Ц. Кайтох, В. Бак, Б. Гарбаж-Гльос Iнститут фiзики, Педагогiчний унiверситет, Кракiв, Польща Полiкристалiчний зразок (Ba0.90Pb0.10)(Ti0.90Sn0.10)O3 отриманий за допомогою стандартної керамiчної технологiї. Дiелектричнi вимiрювання здiйсненi в залежностi вiд температури i частоти електричного ви- мiрюючого поля. Характер фазових переходiв керамiк (Ba0.90Pb0.10)(Ti0.90Sn0.10)O3 сильно залежить вiд присутностi Pb в зразку. Отриманi результати вказують на дифузiйний характер фазового переходу. Тем- пературна залежнiсть дiелектричних властивостей показала, що фазовий перехiд з параелектричної до сегнетоелектричної фази має мiсце при тiй самiй температурi (Tm = 367 K). Вона не залежить вiд частоти вимiрюючого електричного поля. Змiна значення параметра γ має мiсце в параелектричнiй фазi. Ключовi слова: дiелектричнi властивостi, фазовий перехiд, полярнi областi, керамiка 31702-5 Introduction Experimental Results and discussion Conclusions