Electrophysical properties of PMN-PT-PS-PFN:Li ceramics
We present the technology of obtaining and the electrophysical properties of a multicomponent material 0.61PMN-0.20PT-0.09PS-0.1PFN:Li (PMN-PT-PS-PFN:Li). The addition of PFN into PMN-PT decreases the temperature of final sintering which is very important during technological process (addition of Li...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2013
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/120840 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Electrophysical properties of PMN-PT-PS-PFN:Li ceramics / R. Skulski, D. Bochenek, P. Niemiec, P. Wawrzała, J. Suchanicz // Condensed Matter Physics. — 2013. — Т. 16, № 3. — С. 31703:1-6. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-120840 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1208402017-06-14T03:04:20Z Electrophysical properties of PMN-PT-PS-PFN:Li ceramics Skulski, R. Bochenek, D. Niemiec, P. Wawrzała, P. Suchanicz, J. We present the technology of obtaining and the electrophysical properties of a multicomponent material 0.61PMN-0.20PT-0.09PS-0.1PFN:Li (PMN-PT-PS-PFN:Li). The addition of PFN into PMN-PT decreases the temperature of final sintering which is very important during technological process (addition of Li decreases electric conductivity of PFN). Addition of PS i.e., PbSnO₃ (which is unstable in ceramic form) permits to shift the temperature of the maximum of dielectric permittivity. One-step method of obtaining ceramic samples from oxides and carbonates has been used. XRD, microstructure, scanning calorimetry measurements and the main dielectric, ferroelectric and electromechanical properties have been investigated for the obtained samples. Ми представляємо технологiю отримання i електрофiзичнi властивостi багатокомпонентного матерiалу 0.61PMN-0.20PT-0.09PS-0.1PFN:Li (PMN-PT-PS-PFN:Li). Додавання PFN в PMN–PT понижує температуру кiнцевого спiкання, яка є дуже важливою пiдчас технологiчного процесу (додавання Li понижує електри-чну провiднiсть PFN). Додавання PS а саме, PbSnO₃ (який є нестiйким в керамiчному виглядi) дозволяє зсунути температуру максимуму дiелектричної сприйнятливостi. Використано однокроковий метод отримання керамiчних зразкiв з оксидiв i карбонатiв. Для отриманих зразкiв вивчено XRD, мiкроструктуру, проведено скануючi калометричнi вимiрювання i дослiджено головнi дiелектричнi, сегнетоелектричнi i електромеханiчнi властивостi. 2013 Article Electrophysical properties of PMN-PT-PS-PFN:Li ceramics / R. Skulski, D. Bochenek, P. Niemiec, P. Wawrzała, J. Suchanicz // Condensed Matter Physics. — 2013. — Т. 16, № 3. — С. 31703:1-6. — Бібліогр.: 15 назв. — англ. 1607-324X PACS: 77.84.Dy, 77.80.Dj, 77.80.Bh, 77.22Gm DOI:10.5488/CMP.16.31703 arXiv:1309.6093 http://dspace.nbuv.gov.ua/handle/123456789/120840 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We present the technology of obtaining and the electrophysical properties of a multicomponent material 0.61PMN-0.20PT-0.09PS-0.1PFN:Li (PMN-PT-PS-PFN:Li). The addition of PFN into PMN-PT decreases the temperature of final sintering which is very important during technological process (addition of Li decreases electric conductivity of PFN). Addition of PS i.e., PbSnO₃ (which is unstable in ceramic form) permits to shift the temperature of the maximum of dielectric permittivity. One-step method of obtaining ceramic samples from oxides and carbonates has been used. XRD, microstructure, scanning calorimetry measurements and the main dielectric, ferroelectric and electromechanical properties have been investigated for the obtained samples. |
format |
Article |
author |
Skulski, R. Bochenek, D. Niemiec, P. Wawrzała, P. Suchanicz, J. |
spellingShingle |
Skulski, R. Bochenek, D. Niemiec, P. Wawrzała, P. Suchanicz, J. Electrophysical properties of PMN-PT-PS-PFN:Li ceramics Condensed Matter Physics |
author_facet |
Skulski, R. Bochenek, D. Niemiec, P. Wawrzała, P. Suchanicz, J. |
author_sort |
Skulski, R. |
title |
Electrophysical properties of PMN-PT-PS-PFN:Li ceramics |
title_short |
Electrophysical properties of PMN-PT-PS-PFN:Li ceramics |
title_full |
Electrophysical properties of PMN-PT-PS-PFN:Li ceramics |
title_fullStr |
Electrophysical properties of PMN-PT-PS-PFN:Li ceramics |
title_full_unstemmed |
Electrophysical properties of PMN-PT-PS-PFN:Li ceramics |
title_sort |
electrophysical properties of pmn-pt-ps-pfn:li ceramics |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/120840 |
citation_txt |
Electrophysical properties of PMN-PT-PS-PFN:Li ceramics / R. Skulski, D. Bochenek, P. Niemiec, P. Wawrzała, J. Suchanicz // Condensed Matter Physics. — 2013. — Т. 16, № 3. — С. 31703:1-6. — Бібліогр.: 15 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT skulskir electrophysicalpropertiesofpmnptpspfnliceramics AT bochenekd electrophysicalpropertiesofpmnptpspfnliceramics AT niemiecp electrophysicalpropertiesofpmnptpspfnliceramics AT wawrzałap electrophysicalpropertiesofpmnptpspfnliceramics AT suchaniczj electrophysicalpropertiesofpmnptpspfnliceramics |
first_indexed |
2025-07-08T18:42:49Z |
last_indexed |
2025-07-08T18:42:49Z |
_version_ |
1837105331899990016 |
fulltext |
Condensed Matter Physics, 2013, Vol. 16, No 3, 31703: 1–6
DOI: 10.5488/CMP.16.31703
http://www.icmp.lviv.ua/journal
Proceedings Paper
Electrophysical properties of PMN-PT-PS-PFN:Li
ceramics
R. Skulski1, D. Bochenek1, P. Niemiec1∗, P. Wawrzała1, J. Suchanicz2
1 University of Silesia, Department of Materials Science, 2, Śnieżna St., 41–200 Sosnowiec, Poland
2 Pedagogical University, 2 Podchorążych St., 30–084 Cracow, Poland
Received October 3, 2012, in final form January 16, 2013
We present the technology of obtaining and the electrophysical properties of a multicomponent material
0.61PMN-0.20PT-0.09PS-0.1PFN:Li (PMN-PT-PS-PFN:Li). The addition of PFN into PMN-PT decreases the tem-
perature of final sintering which is very important during technological process (addition of Li decreases electric
conductivity of PFN). Addition of PS i.e., PbSnO3 (which is unstable in ceramic form) permits to shift the temper-ature of themaximum of dielectric permittivity. One-stepmethod of obtaining ceramic samples from oxides and
carbonates has been used. XRD, microstructure, scanning calorimetry measurements and the main dielectric,
ferroelectric and electromechanical properties have been investigated for the obtained samples.
Key words: relaxor, ferroelectrics, ceramics, capacitor, phase transition
PACS: 77.84.Dy, 77.80.Dj, 77.80.Bh, 77.22Gm
1. Introduction
Pb(Mg1/3Nb2/3)O3 (PMN) is a classic relaxor. Polarization of PMN gradually decreases with an in-
creasing temperature in a very wide temperature range. The maximum of dielectric permittivity vs. tem-
perature is diffused and the temperature Tm depends on the frequency of measurements. Macroscopic
structural investigations do not exhibit the presence of a phase transition. It is widely believed that such
properties of PMN are related to the existence of polar regions instead of normal ferroelectric domains.
In solid solutions (1− x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) Tm shifts towards higher temperatures
with an increasing x (from about −3◦C for x = 0 up to about 227◦C for x = 0.5). At the same time, a
continuous change of the properties from relaxor to normal ferroelectric properties takes place. For low
values of x, the hysteresis loops of PMN-PT are very narrow, while for higher x the loops become wide.
Phase diagram of PMN-PT based on dielectric permittivity measurements was first presented in the work
by Shrout [1]. More recently, Noheda et al. [2], Singh et al. [3] and Zekria [4] improved the phase diagram
of PMN-PT basing on structural investigations. More recent investigations using synchrotron radiation
made by Ye et al. [5] showed almost zero changes of elementary cell parameters, which means it is very
hard to estimate the phase transition temperature. Also, some of our previous works, for instance [6, 7],
concerned PMN-PT. Our samples described in this paper are based on 0.75PMN-0.25PT inwhich a diffused
phase transition estimated by variousmethods takes place at temperature range from about 50◦C to about
100◦C.
The nature of phase transition in a solid solution (1− x)Pb(Fe1/2Nb1/2)O3-xPbTiO3 (i.e., PFN-PT) with
an increasing x changes from relaxor ferroelectric (Tm at about 127◦C) to normal ferroelectric [8]. At the
same time, the crystal structure changes from rhombohedral to the tetragonal [8]. The addition of PFN
into PMN-PT decreases the temperature of final sintering, which is very important for lead containing
∗
E-mail: niemiec.przemek@gmail.com
© R. Skulski, D. Bochenek, P. Niemiec, P. Wawrzała, J. Suchanicz, 2013 31703-1
http://dx.doi.org/10.5488/CMP.16.31703
http://www.icmp.lviv.ua/journal
R. Skulski et al.
materials [9]. High electric conductivity of PFN [10] can be decreased by addition of Li [11–14]. The addi-
tion of PS i.e., PbSnO3 into PMN-PT (which is unstable in ceramic form) permits to shift the temperature
of the maximum of dielectric permittivity.
Themain aim of this paper is to obtain and to investigate themain properties and phase transitions in
0.6075PMN-0.2025PT-0.09PS-0.1PLFN (abbreviation PMN-PT-PS-PFN:Li). One-step method has been used
for obtaining our samples in which simple oxides and carbonates were used as starting components.
2. Experimental
The below described PMN-PT-PS-PFN:Li samples were obtained using the classic ceramic technology
from the oxides: PbO, MgO, Nb2O5, TiO2, Fe2O3, SnO2 and from the carbonate: Li2CO3. PbO and MgO
were weighted with excess of 6.0 %mol. and 2.0 %mol., respectively. The initial components were mixed
and milled in a planetary ball mill. At the next step, the obtained powders were pressed into pellets and
synthesized (Tsynth = 850◦C, tsynth = 4 h). Then, the pellets were crushed, once more mixed and milled,
and finally pressed into discs with a diameter of about 10 mm and thickness of 1 mm. The obtained discs
were sintered at Ts = 1050◦C, ts = 3 h. The final steps of the process were as follows: grinding, polishing,
removing the mechanical stresses by heating, and setting silver paste electrodes.
Investigations of a crystallographic structure of the obtained ceramic samples were performed using
the Philips X’Pert diffractometer. Dielectric measurements were performed during the heating (with the
heating rate of about 0.5◦C/min) using a QuadTech 1920 Precision LCRmeter (frequencies from f = 0.1Hz
to 1000 kHz). P −E hysteresis loops were investigated using a virtual Sawyer-Tower bridge and Matsu-
sada Inc. HEOPS-5B6 precision high voltage amplifier. The data were stored on a computer disc using
A/D transducer card. Electromechanical measurements were carried out using D-64 Philtec Inc. optical
displacement meter and high voltage amplifier (see above).
Specific heat measurements weremade using a Netzsch DSC F3Maia scanning calorimeter of the tem-
perature range from −150◦C to 400◦C under argon atmosphere at a flow rate of 30 ml/min. The specimen
consisted of a single piece of ceramics of the average mass of 20 mg and was placed in an alumina cru-
cible. The data were collected during the heating and cooling processes with constant rate of 10◦C/min.
3. Results
The XRD pattern of the obtained ceramics is presented in figure 1. The result of a multicomponent
analysis of the 200 maximum is presented in the insert in figure 1. The 200 maximum consists of two
components. However, they are very close to one another. Hence, we can assert that the crystalline struc-
ture is pseudocubic. For the angels of about 29
◦
, 32
◦
and 49
◦
, the small maxima from unwanted phases
are visible. This is probably a consequence of incomplete reaction during the annealing.
The results of investigations of the dependencies of dielectric permittivity and dielectric loss on the
temperature are presented in figure 2 (a) and figure 2 (b), respectively.
The maximum of dielectric permittivity is diffused, which is typical of relaxor materials. The disper-
sion of dielectric permittivity is rather strong, but a shift of the maximumwith frequency is not observed.
At the room temperature, the values of losses of the obtained PMN-PT-PS-PFN:Li ceramics are low and in-
crease with temperature and frequency. Dependencies ε′′(ε′) and ε′( f ) are presented in figure 3.
Curves from figure 3 (b) have been fitted to a real part of the complex permittivity obtained from
Havriliak-Negami equation [15]:
ε∗ = ε∞+ ∆ε
(1+ iωτα)β
. (3.1)
The results obtained in such a way are presented in figure 3 (b) as solid lines. Parameters of fitting
are presented in table 1.
P −E hysteresis loops are presented in figure 4.
With an increasing temperature, the value of spontaneous polarization Ps decreases from about
26 µC/cm
2
for 30
◦
C to about 17 µC/cm
2
for 100
◦
C. The residual polarization Pr decreases from about
31703-2
Electrophysical properties of PMN-PT-PS-PFN: Li ceramics
Figure 1. XRD pattern for PMN-PT-PS-PFN:Li ceramics. In the insert— line (200).
Figure 2. Dependencies ε′(T ) (a), and tanδ(T ) (b) (on heating 0.5◦C/min) for PMN-PT-PS-PFN:Li ceramics.
Table 1. Parameters of fitting the experimental data to equation (3.1).
T [◦C] ε∞ εs 1/ f0 [s] α β
20 1553 3064 0.00108 0.91 0.38
30 1640 3376 0.00104 0.93 0.30
40 1837 4239 0.00079 0.80 0.35
50 2038 5701 0.00069 0.75 0.34
60 1950 8027 0.00061 0.70 0.32
70 1200 9970 0.00056 0.66 0.31
80 800 10700 0.00051 0.62 0.30
90 1000 11300 0.00048 0.68 0.29
100 1200 11000 0.00045 0.70 0.29
31703-3
R. Skulski et al.
Figure 3. (a) Dependencies ε′′(ε′) obtained based on the data presented in figure 2. (b) Dependencies ε′( f )
obtained based on the data presented in figure 2.
Figure 4. P − E hysteresis loops for PMN-PT-PS-PFN:Li ceramics at different temperatures (frequency
1.0 Hz).
Figure 5. (a) Dependency Pr(T ) and (b) dependency ∂Pr(T )/∂T for PMN-PT-PS-PFN:Li ceramics.
19 µC/cm
2
for 30
◦
C to about 6 µC/cm
2
for 100
◦
C. Coercive field EC decreases from 0.4 kV/mm for 30
◦
C
to 0.30 kV/mm for 50
◦
C. The increase of EC to about 0.4 kV/mm (for 100
◦
C) is probably related to the
increase of electric conductivity. The dependency Pr(T ) is presented in figure 5 (a). Figure 5 (b) presents
31703-4
Electrophysical properties of PMN-PT-PS-PFN: Li ceramics
the derivative of P on temperature calculated from this dependency.
The maximum of the derivative of Pr is observed at the temperature of about 50
◦
C, i.e., lower than
the maximum of dielectric permittivity measured using RCL meter. A similar situation was observed, for
example, for a PMN single crystal in the work [9].
Figure 6 shows the strain loop in the function of electric field for PMN-PT-SP-PFN:Li ceramics. The
value of the d33 coefficient measured at room temperature for the unipolar deformation using a field of
about 0.5 kV/mm is equal to 355·10−12
m/V and for the unipolar deformation using a field about 1 kV/mm
is equal to 440 ·10−12
m/V. Maximum value of d33 for bipolar polarization is about 700 ·10−12
m/V at the
field of 1 kV/mm.
Figure 6.Mechanical strain vs. electric field for PMN-PT-PS-PFN:Li ceramics.
The results of investigations using a scanning calorimeter are presented in figure 6.
Calorimetric investigations confirmed that the phase transition in the investigated materials is dif-
fused. Based on the curves from figure 7 we observe the anomalies (indicated by arrows) suggesting
phase transitions in these temperatures.
4. Summary
The above described PMN-PT-PS-PFN:Li ceramics obtained by us are useful materials, for instance
for applications in MLCC capacitors, although they operate in weak electric fields. Although the obtained
material possesses relaxor properties, still it somewhat differs from the most classic relaxor of PMN. For
Figure 7. The results of investigations of PMN-PT-PS-PFN:Li ceramics using a scanning calorimeter.
31703-5
R. Skulski et al.
example, at room temperature, in the XRD spectrum, a small fission of a 200 maximum can be seen,
which means that at room temperature it is not 100% pseudoregular phase (probably, a small dopant of
rhombohedral phase occurs). Despite the strong dependency of ε′(T ) on frequency and a typical Debye
relaxation, practically no shift of Tm with frequency takes place. The application of a constant electric
field (i.e., polarization) changes the dependencies of ε′(T ). This is probably due to the fact that at room
temperature a normal ferroelectric domain structure exists. This is also confirmed by a relatively narrow
hysteresis loop typical of soft ferroelectrics which become less saturated at higher temperatures. Temper-
ature of the phase transition calculated from the hysteresis loop is about 50
◦
C lower than Tm temperature.
This can be explained in the following way. The ferroelectric domains become smaller with an increas-
ing temperature and are divided into nanodomains/polar regions. The calculated value of piezoelectric
coefficient is rather high d33 which is also typical of ferroelectrics. This might be a problem if the usage
of the obtained material in high voltage pulse MLCC capacitors is considered.
References
1. Shrout T.R., Chang Z.P., Kim N., Markgraf S., Ferroelectrics Lett., 1990, 12, No. 3, 63;
doi:10.1080/07315179008201118.
2. Noheda B., Cox D.E., Shirane G., Gao J., Ye Z.-G., Phys. Rev. B, 2002, 66, 054104; doi:10.1103/PhysRevB.66.054104.
3. Singh A.K., Pandey D., Phys. Rev. B, 2003, 67, 064102; doi:10.1103/PhysRevB.67.064102.
4. Zekria D., Glazer A.M., J. Appl. Cryst., 2004, 37, 143; doi:10.1107/S002188980302733X.
5. Ye Z.-G., Bing Y., Gao J., Bokov A.A., Stephens P., Noheda B., Shirane G., Phys. Rev. B, 2003, 67, 104104;
doi:10.1103/PhysRevB.67.104104.
6. Skulski R., Wawrzała P., Ćwikiel K., Bochenek D., J. Intel. Mat. Syst. Str., 2007, 18, No. 10, 1049;
doi:10.1177/1045389X06072356.
7. Wawrzała P., Skulski R., Arch. Metall. Mater., 2011, 56, 1199; doi:10.2478/v10172-011-0135-4.
8. Sai Sunder V.V.S.S., Umarji A.M., Mater. Res. Bull., 1995, 30, 427; doi:10.1016/0025-5408(95)00016-X.
9. Fu D., Taniguchi H., Itoh M., Koshihara S.-y., Yamamoto N., Mori S., Phys. Rev. Lett., 2009, 103, 207601;
doi:10.1103/PhysRevLett.103.207601.
10. Bochenek D., Eur. Phys. J.-Spec. Top., 2008, 154, 15; doi:10.1140/epjst/e2008-00510-9.
11. Wójcik K., Zieleniec K., Milata M., Ferroelectrics, 2003, 289, 107; doi:10.1080/00150190390221331.
12. Bochenek D., Kruk P., Skulski R., Wawrzała P., J. Electroceram., 2011, 26, 8; doi:10.1007/s10832-010-9620-9.
13. Bochenek D., Wawrzała P., Arch. Acoust., 2006, 31, No. 4, 513-9.
14. Xia Z., Li Q., Acta Mater., 2007, 55, No. 18, 6176; doi:10.1016/j.actamat.2007.07.017.
15. Havriliak S., Negami S., Polymer, 1967, 8, 161; doi:10.1016/0032-3861(67)90021-3.
Електрофiзичнi властивостi керамiк PMN-PT-PS-PFN:Li
Р. Скульскi1, Д. Бохенек1, П. Нємєц 1, П. Вавжала 1, Я. Суханич2
1 Сiлезький унiверситет, вiддiл матерiалознавства, Сосновєц, Польща
2 Педагогiчний унiверситет, Кракiв, Польща
Ми представляємо технологiю отримання i електрофiзичнi властивостi багатокомпонентного матерiалу
0.61PMN-0.20PT-0.09PS-0.1PFN:Li (PMN-PT-PS-PFN:Li). Додавання PFN в PMN–PT понижує температуру кiн-
цевого спiкання, яка є дуже важливою пiдчас технологiчного процесу (додавання Li понижує електри-
чну провiднiсть PFN). Додавання PS а саме, PbSnO3 (який є нестiйким в керамiчному виглядi) дозволяє
зсунути температуру максимуму дiелектричної сприйнятливостi. Використано однокроковий метод отри-
мання керамiчних зразкiв з оксидiв i карбонатiв. Для отриманих зразкiв вивчено XRD, мiкроструктуру,
проведено скануючi калометричнi вимiрювання i дослiджено головнi дiелектричнi, сегнетоелектричнi i
електромеханiчнi властивостi.
Ключовi слова: релаксор, сегнетоелектрики, керамiка, конденсатор, фазовий перехiд
31703-6
http://dx.doi.org/10.1080/07315179008201118
http://dx.doi.org/10.1103/PhysRevB.66.054104
http://dx.doi.org/10.1103/PhysRevB.67.064102
http://dx.doi.org/10.1107/S002188980302733X
http://dx.doi.org/10.1103/PhysRevB.67.104104
http://dx.doi.org/10.1177/1045389X06072356
http://dx.doi.org/10.2478/v10172-011-0135-4
http://dx.doi.org/10.1016/0025-5408(95)00016-X
http://dx.doi.org/10.1103/PhysRevLett.103.207601
http://dx.doi.org/10.1140/epjst/e2008-00510-9
http://dx.doi.org/10.1080/00150190390221331
http://dx.doi.org/10.1007/s10832-010-9620-9
http://dx.doi.org/10.1016/j.actamat.2007.07.017
http://dx.doi.org/10.1016/0032-3861(67)90021-3
Introduction
Experimental
Results
Summary
|