Electrophysical properties of PMN-PT-PS-PFN:Li ceramics

We present the technology of obtaining and the electrophysical properties of a multicomponent material 0.61PMN-0.20PT-0.09PS-0.1PFN:Li (PMN-PT-PS-PFN:Li). The addition of PFN into PMN-PT decreases the temperature of final sintering which is very important during technological process (addition of Li...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Skulski, R., Bochenek, D., Niemiec, P., Wawrzała, P., Suchanicz, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2013
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120840
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Electrophysical properties of PMN-PT-PS-PFN:Li ceramics / R. Skulski, D. Bochenek, P. Niemiec, P. Wawrzała, J. Suchanicz // Condensed Matter Physics. — 2013. — Т. 16, № 3. — С. 31703:1-6. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-120840
record_format dspace
spelling irk-123456789-1208402017-06-14T03:04:20Z Electrophysical properties of PMN-PT-PS-PFN:Li ceramics Skulski, R. Bochenek, D. Niemiec, P. Wawrzała, P. Suchanicz, J. We present the technology of obtaining and the electrophysical properties of a multicomponent material 0.61PMN-0.20PT-0.09PS-0.1PFN:Li (PMN-PT-PS-PFN:Li). The addition of PFN into PMN-PT decreases the temperature of final sintering which is very important during technological process (addition of Li decreases electric conductivity of PFN). Addition of PS i.e., PbSnO₃ (which is unstable in ceramic form) permits to shift the temperature of the maximum of dielectric permittivity. One-step method of obtaining ceramic samples from oxides and carbonates has been used. XRD, microstructure, scanning calorimetry measurements and the main dielectric, ferroelectric and electromechanical properties have been investigated for the obtained samples. Ми представляємо технологiю отримання i електрофiзичнi властивостi багатокомпонентного матерiалу 0.61PMN-0.20PT-0.09PS-0.1PFN:Li (PMN-PT-PS-PFN:Li). Додавання PFN в PMN–PT понижує температуру кiнцевого спiкання, яка є дуже важливою пiдчас технологiчного процесу (додавання Li понижує електри-чну провiднiсть PFN). Додавання PS а саме, PbSnO₃ (який є нестiйким в керамiчному виглядi) дозволяє зсунути температуру максимуму дiелектричної сприйнятливостi. Використано однокроковий метод отримання керамiчних зразкiв з оксидiв i карбонатiв. Для отриманих зразкiв вивчено XRD, мiкроструктуру, проведено скануючi калометричнi вимiрювання i дослiджено головнi дiелектричнi, сегнетоелектричнi i електромеханiчнi властивостi. 2013 Article Electrophysical properties of PMN-PT-PS-PFN:Li ceramics / R. Skulski, D. Bochenek, P. Niemiec, P. Wawrzała, J. Suchanicz // Condensed Matter Physics. — 2013. — Т. 16, № 3. — С. 31703:1-6. — Бібліогр.: 15 назв. — англ. 1607-324X PACS: 77.84.Dy, 77.80.Dj, 77.80.Bh, 77.22Gm DOI:10.5488/CMP.16.31703 arXiv:1309.6093 http://dspace.nbuv.gov.ua/handle/123456789/120840 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present the technology of obtaining and the electrophysical properties of a multicomponent material 0.61PMN-0.20PT-0.09PS-0.1PFN:Li (PMN-PT-PS-PFN:Li). The addition of PFN into PMN-PT decreases the temperature of final sintering which is very important during technological process (addition of Li decreases electric conductivity of PFN). Addition of PS i.e., PbSnO₃ (which is unstable in ceramic form) permits to shift the temperature of the maximum of dielectric permittivity. One-step method of obtaining ceramic samples from oxides and carbonates has been used. XRD, microstructure, scanning calorimetry measurements and the main dielectric, ferroelectric and electromechanical properties have been investigated for the obtained samples.
format Article
author Skulski, R.
Bochenek, D.
Niemiec, P.
Wawrzała, P.
Suchanicz, J.
spellingShingle Skulski, R.
Bochenek, D.
Niemiec, P.
Wawrzała, P.
Suchanicz, J.
Electrophysical properties of PMN-PT-PS-PFN:Li ceramics
Condensed Matter Physics
author_facet Skulski, R.
Bochenek, D.
Niemiec, P.
Wawrzała, P.
Suchanicz, J.
author_sort Skulski, R.
title Electrophysical properties of PMN-PT-PS-PFN:Li ceramics
title_short Electrophysical properties of PMN-PT-PS-PFN:Li ceramics
title_full Electrophysical properties of PMN-PT-PS-PFN:Li ceramics
title_fullStr Electrophysical properties of PMN-PT-PS-PFN:Li ceramics
title_full_unstemmed Electrophysical properties of PMN-PT-PS-PFN:Li ceramics
title_sort electrophysical properties of pmn-pt-ps-pfn:li ceramics
publisher Інститут фізики конденсованих систем НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/120840
citation_txt Electrophysical properties of PMN-PT-PS-PFN:Li ceramics / R. Skulski, D. Bochenek, P. Niemiec, P. Wawrzała, J. Suchanicz // Condensed Matter Physics. — 2013. — Т. 16, № 3. — С. 31703:1-6. — Бібліогр.: 15 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT skulskir electrophysicalpropertiesofpmnptpspfnliceramics
AT bochenekd electrophysicalpropertiesofpmnptpspfnliceramics
AT niemiecp electrophysicalpropertiesofpmnptpspfnliceramics
AT wawrzałap electrophysicalpropertiesofpmnptpspfnliceramics
AT suchaniczj electrophysicalpropertiesofpmnptpspfnliceramics
first_indexed 2025-07-08T18:42:49Z
last_indexed 2025-07-08T18:42:49Z
_version_ 1837105331899990016
fulltext Condensed Matter Physics, 2013, Vol. 16, No 3, 31703: 1–6 DOI: 10.5488/CMP.16.31703 http://www.icmp.lviv.ua/journal Proceedings Paper Electrophysical properties of PMN-PT-PS-PFN:Li ceramics R. Skulski1, D. Bochenek1, P. Niemiec1∗, P. Wawrzała1, J. Suchanicz2 1 University of Silesia, Department of Materials Science, 2, Śnieżna St., 41–200 Sosnowiec, Poland 2 Pedagogical University, 2 Podchorążych St., 30–084 Cracow, Poland Received October 3, 2012, in final form January 16, 2013 We present the technology of obtaining and the electrophysical properties of a multicomponent material 0.61PMN-0.20PT-0.09PS-0.1PFN:Li (PMN-PT-PS-PFN:Li). The addition of PFN into PMN-PT decreases the tem- perature of final sintering which is very important during technological process (addition of Li decreases electric conductivity of PFN). Addition of PS i.e., PbSnO3 (which is unstable in ceramic form) permits to shift the temper-ature of themaximum of dielectric permittivity. One-stepmethod of obtaining ceramic samples from oxides and carbonates has been used. XRD, microstructure, scanning calorimetry measurements and the main dielectric, ferroelectric and electromechanical properties have been investigated for the obtained samples. Key words: relaxor, ferroelectrics, ceramics, capacitor, phase transition PACS: 77.84.Dy, 77.80.Dj, 77.80.Bh, 77.22Gm 1. Introduction Pb(Mg1/3Nb2/3)O3 (PMN) is a classic relaxor. Polarization of PMN gradually decreases with an in- creasing temperature in a very wide temperature range. The maximum of dielectric permittivity vs. tem- perature is diffused and the temperature Tm depends on the frequency of measurements. Macroscopic structural investigations do not exhibit the presence of a phase transition. It is widely believed that such properties of PMN are related to the existence of polar regions instead of normal ferroelectric domains. In solid solutions (1− x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) Tm shifts towards higher temperatures with an increasing x (from about −3◦C for x = 0 up to about 227◦C for x = 0.5). At the same time, a continuous change of the properties from relaxor to normal ferroelectric properties takes place. For low values of x, the hysteresis loops of PMN-PT are very narrow, while for higher x the loops become wide. Phase diagram of PMN-PT based on dielectric permittivity measurements was first presented in the work by Shrout [1]. More recently, Noheda et al. [2], Singh et al. [3] and Zekria [4] improved the phase diagram of PMN-PT basing on structural investigations. More recent investigations using synchrotron radiation made by Ye et al. [5] showed almost zero changes of elementary cell parameters, which means it is very hard to estimate the phase transition temperature. Also, some of our previous works, for instance [6, 7], concerned PMN-PT. Our samples described in this paper are based on 0.75PMN-0.25PT inwhich a diffused phase transition estimated by variousmethods takes place at temperature range from about 50◦C to about 100◦C. The nature of phase transition in a solid solution (1− x)Pb(Fe1/2Nb1/2)O3-xPbTiO3 (i.e., PFN-PT) with an increasing x changes from relaxor ferroelectric (Tm at about 127◦C) to normal ferroelectric [8]. At the same time, the crystal structure changes from rhombohedral to the tetragonal [8]. The addition of PFN into PMN-PT decreases the temperature of final sintering, which is very important for lead containing ∗ E-mail: niemiec.przemek@gmail.com © R. Skulski, D. Bochenek, P. Niemiec, P. Wawrzała, J. Suchanicz, 2013 31703-1 http://dx.doi.org/10.5488/CMP.16.31703 http://www.icmp.lviv.ua/journal R. Skulski et al. materials [9]. High electric conductivity of PFN [10] can be decreased by addition of Li [11–14]. The addi- tion of PS i.e., PbSnO3 into PMN-PT (which is unstable in ceramic form) permits to shift the temperature of the maximum of dielectric permittivity. Themain aim of this paper is to obtain and to investigate themain properties and phase transitions in 0.6075PMN-0.2025PT-0.09PS-0.1PLFN (abbreviation PMN-PT-PS-PFN:Li). One-step method has been used for obtaining our samples in which simple oxides and carbonates were used as starting components. 2. Experimental The below described PMN-PT-PS-PFN:Li samples were obtained using the classic ceramic technology from the oxides: PbO, MgO, Nb2O5, TiO2, Fe2O3, SnO2 and from the carbonate: Li2CO3. PbO and MgO were weighted with excess of 6.0 %mol. and 2.0 %mol., respectively. The initial components were mixed and milled in a planetary ball mill. At the next step, the obtained powders were pressed into pellets and synthesized (Tsynth = 850◦C, tsynth = 4 h). Then, the pellets were crushed, once more mixed and milled, and finally pressed into discs with a diameter of about 10 mm and thickness of 1 mm. The obtained discs were sintered at Ts = 1050◦C, ts = 3 h. The final steps of the process were as follows: grinding, polishing, removing the mechanical stresses by heating, and setting silver paste electrodes. Investigations of a crystallographic structure of the obtained ceramic samples were performed using the Philips X’Pert diffractometer. Dielectric measurements were performed during the heating (with the heating rate of about 0.5◦C/min) using a QuadTech 1920 Precision LCRmeter (frequencies from f = 0.1Hz to 1000 kHz). P −E hysteresis loops were investigated using a virtual Sawyer-Tower bridge and Matsu- sada Inc. HEOPS-5B6 precision high voltage amplifier. The data were stored on a computer disc using A/D transducer card. Electromechanical measurements were carried out using D-64 Philtec Inc. optical displacement meter and high voltage amplifier (see above). Specific heat measurements weremade using a Netzsch DSC F3Maia scanning calorimeter of the tem- perature range from −150◦C to 400◦C under argon atmosphere at a flow rate of 30 ml/min. The specimen consisted of a single piece of ceramics of the average mass of 20 mg and was placed in an alumina cru- cible. The data were collected during the heating and cooling processes with constant rate of 10◦C/min. 3. Results The XRD pattern of the obtained ceramics is presented in figure 1. The result of a multicomponent analysis of the 200 maximum is presented in the insert in figure 1. The 200 maximum consists of two components. However, they are very close to one another. Hence, we can assert that the crystalline struc- ture is pseudocubic. For the angels of about 29 ◦ , 32 ◦ and 49 ◦ , the small maxima from unwanted phases are visible. This is probably a consequence of incomplete reaction during the annealing. The results of investigations of the dependencies of dielectric permittivity and dielectric loss on the temperature are presented in figure 2 (a) and figure 2 (b), respectively. The maximum of dielectric permittivity is diffused, which is typical of relaxor materials. The disper- sion of dielectric permittivity is rather strong, but a shift of the maximumwith frequency is not observed. At the room temperature, the values of losses of the obtained PMN-PT-PS-PFN:Li ceramics are low and in- crease with temperature and frequency. Dependencies ε′′(ε′) and ε′( f ) are presented in figure 3. Curves from figure 3 (b) have been fitted to a real part of the complex permittivity obtained from Havriliak-Negami equation [15]: ε∗ = ε∞+ ∆ε (1+ iωτα)β . (3.1) The results obtained in such a way are presented in figure 3 (b) as solid lines. Parameters of fitting are presented in table 1. P −E hysteresis loops are presented in figure 4. With an increasing temperature, the value of spontaneous polarization Ps decreases from about 26 µC/cm 2 for 30 ◦ C to about 17 µC/cm 2 for 100 ◦ C. The residual polarization Pr decreases from about 31703-2 Electrophysical properties of PMN-PT-PS-PFN: Li ceramics Figure 1. XRD pattern for PMN-PT-PS-PFN:Li ceramics. In the insert— line (200). Figure 2. Dependencies ε′(T ) (a), and tanδ(T ) (b) (on heating 0.5◦C/min) for PMN-PT-PS-PFN:Li ceramics. Table 1. Parameters of fitting the experimental data to equation (3.1). T [◦C] ε∞ εs 1/ f0 [s] α β 20 1553 3064 0.00108 0.91 0.38 30 1640 3376 0.00104 0.93 0.30 40 1837 4239 0.00079 0.80 0.35 50 2038 5701 0.00069 0.75 0.34 60 1950 8027 0.00061 0.70 0.32 70 1200 9970 0.00056 0.66 0.31 80 800 10700 0.00051 0.62 0.30 90 1000 11300 0.00048 0.68 0.29 100 1200 11000 0.00045 0.70 0.29 31703-3 R. Skulski et al. Figure 3. (a) Dependencies ε′′(ε′) obtained based on the data presented in figure 2. (b) Dependencies ε′( f ) obtained based on the data presented in figure 2. Figure 4. P − E hysteresis loops for PMN-PT-PS-PFN:Li ceramics at different temperatures (frequency 1.0 Hz). Figure 5. (a) Dependency Pr(T ) and (b) dependency ∂Pr(T )/∂T for PMN-PT-PS-PFN:Li ceramics. 19 µC/cm 2 for 30 ◦ C to about 6 µC/cm 2 for 100 ◦ C. Coercive field EC decreases from 0.4 kV/mm for 30 ◦ C to 0.30 kV/mm for 50 ◦ C. The increase of EC to about 0.4 kV/mm (for 100 ◦ C) is probably related to the increase of electric conductivity. The dependency Pr(T ) is presented in figure 5 (a). Figure 5 (b) presents 31703-4 Electrophysical properties of PMN-PT-PS-PFN: Li ceramics the derivative of P on temperature calculated from this dependency. The maximum of the derivative of Pr is observed at the temperature of about 50 ◦ C, i.e., lower than the maximum of dielectric permittivity measured using RCL meter. A similar situation was observed, for example, for a PMN single crystal in the work [9]. Figure 6 shows the strain loop in the function of electric field for PMN-PT-SP-PFN:Li ceramics. The value of the d33 coefficient measured at room temperature for the unipolar deformation using a field of about 0.5 kV/mm is equal to 355·10−12 m/V and for the unipolar deformation using a field about 1 kV/mm is equal to 440 ·10−12 m/V. Maximum value of d33 for bipolar polarization is about 700 ·10−12 m/V at the field of 1 kV/mm. Figure 6.Mechanical strain vs. electric field for PMN-PT-PS-PFN:Li ceramics. The results of investigations using a scanning calorimeter are presented in figure 6. Calorimetric investigations confirmed that the phase transition in the investigated materials is dif- fused. Based on the curves from figure 7 we observe the anomalies (indicated by arrows) suggesting phase transitions in these temperatures. 4. Summary The above described PMN-PT-PS-PFN:Li ceramics obtained by us are useful materials, for instance for applications in MLCC capacitors, although they operate in weak electric fields. Although the obtained material possesses relaxor properties, still it somewhat differs from the most classic relaxor of PMN. For Figure 7. The results of investigations of PMN-PT-PS-PFN:Li ceramics using a scanning calorimeter. 31703-5 R. Skulski et al. example, at room temperature, in the XRD spectrum, a small fission of a 200 maximum can be seen, which means that at room temperature it is not 100% pseudoregular phase (probably, a small dopant of rhombohedral phase occurs). Despite the strong dependency of ε′(T ) on frequency and a typical Debye relaxation, practically no shift of Tm with frequency takes place. The application of a constant electric field (i.e., polarization) changes the dependencies of ε′(T ). This is probably due to the fact that at room temperature a normal ferroelectric domain structure exists. This is also confirmed by a relatively narrow hysteresis loop typical of soft ferroelectrics which become less saturated at higher temperatures. Temper- ature of the phase transition calculated from the hysteresis loop is about 50 ◦ C lower than Tm temperature. This can be explained in the following way. The ferroelectric domains become smaller with an increas- ing temperature and are divided into nanodomains/polar regions. The calculated value of piezoelectric coefficient is rather high d33 which is also typical of ferroelectrics. This might be a problem if the usage of the obtained material in high voltage pulse MLCC capacitors is considered. References 1. Shrout T.R., Chang Z.P., Kim N., Markgraf S., Ferroelectrics Lett., 1990, 12, No. 3, 63; doi:10.1080/07315179008201118. 2. Noheda B., Cox D.E., Shirane G., Gao J., Ye Z.-G., Phys. Rev. B, 2002, 66, 054104; doi:10.1103/PhysRevB.66.054104. 3. Singh A.K., Pandey D., Phys. Rev. B, 2003, 67, 064102; doi:10.1103/PhysRevB.67.064102. 4. Zekria D., Glazer A.M., J. Appl. Cryst., 2004, 37, 143; doi:10.1107/S002188980302733X. 5. Ye Z.-G., Bing Y., Gao J., Bokov A.A., Stephens P., Noheda B., Shirane G., Phys. Rev. B, 2003, 67, 104104; doi:10.1103/PhysRevB.67.104104. 6. Skulski R., Wawrzała P., Ćwikiel K., Bochenek D., J. Intel. Mat. Syst. Str., 2007, 18, No. 10, 1049; doi:10.1177/1045389X06072356. 7. Wawrzała P., Skulski R., Arch. Metall. Mater., 2011, 56, 1199; doi:10.2478/v10172-011-0135-4. 8. Sai Sunder V.V.S.S., Umarji A.M., Mater. Res. Bull., 1995, 30, 427; doi:10.1016/0025-5408(95)00016-X. 9. Fu D., Taniguchi H., Itoh M., Koshihara S.-y., Yamamoto N., Mori S., Phys. Rev. Lett., 2009, 103, 207601; doi:10.1103/PhysRevLett.103.207601. 10. Bochenek D., Eur. Phys. J.-Spec. Top., 2008, 154, 15; doi:10.1140/epjst/e2008-00510-9. 11. Wójcik K., Zieleniec K., Milata M., Ferroelectrics, 2003, 289, 107; doi:10.1080/00150190390221331. 12. Bochenek D., Kruk P., Skulski R., Wawrzała P., J. Electroceram., 2011, 26, 8; doi:10.1007/s10832-010-9620-9. 13. Bochenek D., Wawrzała P., Arch. Acoust., 2006, 31, No. 4, 513-9. 14. Xia Z., Li Q., Acta Mater., 2007, 55, No. 18, 6176; doi:10.1016/j.actamat.2007.07.017. 15. Havriliak S., Negami S., Polymer, 1967, 8, 161; doi:10.1016/0032-3861(67)90021-3. Електрофiзичнi властивостi керамiк PMN-PT-PS-PFN:Li Р. Скульскi1, Д. Бохенек1, П. Нємєц 1, П. Вавжала 1, Я. Суханич2 1 Сiлезький унiверситет, вiддiл матерiалознавства, Сосновєц, Польща 2 Педагогiчний унiверситет, Кракiв, Польща Ми представляємо технологiю отримання i електрофiзичнi властивостi багатокомпонентного матерiалу 0.61PMN-0.20PT-0.09PS-0.1PFN:Li (PMN-PT-PS-PFN:Li). Додавання PFN в PMN–PT понижує температуру кiн- цевого спiкання, яка є дуже важливою пiдчас технологiчного процесу (додавання Li понижує електри- чну провiднiсть PFN). Додавання PS а саме, PbSnO3 (який є нестiйким в керамiчному виглядi) дозволяє зсунути температуру максимуму дiелектричної сприйнятливостi. Використано однокроковий метод отри- мання керамiчних зразкiв з оксидiв i карбонатiв. Для отриманих зразкiв вивчено XRD, мiкроструктуру, проведено скануючi калометричнi вимiрювання i дослiджено головнi дiелектричнi, сегнетоелектричнi i електромеханiчнi властивостi. Ключовi слова: релаксор, сегнетоелектрики, керамiка, конденсатор, фазовий перехiд 31703-6 http://dx.doi.org/10.1080/07315179008201118 http://dx.doi.org/10.1103/PhysRevB.66.054104 http://dx.doi.org/10.1103/PhysRevB.67.064102 http://dx.doi.org/10.1107/S002188980302733X http://dx.doi.org/10.1103/PhysRevB.67.104104 http://dx.doi.org/10.1177/1045389X06072356 http://dx.doi.org/10.2478/v10172-011-0135-4 http://dx.doi.org/10.1016/0025-5408(95)00016-X http://dx.doi.org/10.1103/PhysRevLett.103.207601 http://dx.doi.org/10.1140/epjst/e2008-00510-9 http://dx.doi.org/10.1080/00150190390221331 http://dx.doi.org/10.1007/s10832-010-9620-9 http://dx.doi.org/10.1016/j.actamat.2007.07.017 http://dx.doi.org/10.1016/0032-3861(67)90021-3 Introduction Experimental Results Summary