Phase diagrams of incommensurate ferroelectric NH₄HSeO₄: phenomenological treatment
The phenomenological analysis of the pressure-temperature (P −T ) phase diagram of NH₄HSeO₄ crystals is presented. It is shown that the disagreement between the experimental results and the theory may be removed assuming that the coefficient of the Landau free-energy expansion κ at the gradient te...
Gespeichert in:
Datum: | 2000 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут фізики конденсованих систем НАН України
2000
|
Schriftenreihe: | Condensed Matter Physics |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/120993 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Phase diagrams of incommensurate ferroelectric NH₄HSeO₄: phenomenological treatment / A.V. Kityk, A.V. Zadorozhna // Condensed Matter Physics. — 2000. — Т. 3, № 4(24). — С. 759-766. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-120993 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1209932017-06-14T03:06:09Z Phase diagrams of incommensurate ferroelectric NH₄HSeO₄: phenomenological treatment Kityk, A.V. Zadorozhna, A.V. The phenomenological analysis of the pressure-temperature (P −T ) phase diagram of NH₄HSeO₄ crystals is presented. It is shown that the disagreement between the experimental results and the theory may be removed assuming that the coefficient of the Landau free-energy expansion κ at the gradient term (dq/dz)(dq∗/dz) changes the sign in the experimental range of pressures. According to the present model the triple point observed in NH₄HSeO₄ at PK ≈ 455 MPa, TK ≈ 236 K may be considered as artificial points which result from the limitation of experimental resolution. Therefore, even above PK there still exist two very close (unresolved) lines of the incommensurate phase transitions. Представлений феноменологічний аналіз фазової діаграми тисктемпература (P − T ) кристалів NH₄HSeO₄. Показано, що неузгодження між експериментальними результатами і теорією може бути зняте, припускаючи, що коефіцієнт κ при градієнтному члені (dq/dz)(dq∗/dz) в розкладi вільної енергії Ландау змінює знак в області прикладеного тиску. Відповідно до представленої моделі, потрійна точка, спостережена в NH₄HSeO₄ при PK≈ 455 MPa, TK≈ 236 K, може розглядатись як штучна точка, яка є результатом експериментального обмеження. Отже, навіть вище PK ще існують дві дуже близькі лінії неспівмірних фазових переходів. 2000 Article Phase diagrams of incommensurate ferroelectric NH₄HSeO₄: phenomenological treatment / A.V. Kityk, A.V. Zadorozhna // Condensed Matter Physics. — 2000. — Т. 3, № 4(24). — С. 759-766. — Бібліогр.: 9 назв. — англ. 1607-324X DOI:10.5488/CMP.3.4.759 PACS: 63.20.Dj, 64.70.Kb http://dspace.nbuv.gov.ua/handle/123456789/120993 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The phenomenological analysis of the pressure-temperature (P −T ) phase
diagram of NH₄HSeO₄ crystals is presented. It is shown that the disagreement between the experimental results and the theory may be removed
assuming that the coefficient of the Landau free-energy expansion κ at the
gradient term (dq/dz)(dq∗/dz) changes the sign in the experimental range
of pressures. According to the present model the triple point observed in
NH₄HSeO₄ at PK ≈ 455 MPa, TK ≈ 236 K may be considered as artificial
points which result from the limitation of experimental resolution. Therefore, even above PK there still exist two very close (unresolved) lines of the
incommensurate phase transitions. |
format |
Article |
author |
Kityk, A.V. Zadorozhna, A.V. |
spellingShingle |
Kityk, A.V. Zadorozhna, A.V. Phase diagrams of incommensurate ferroelectric NH₄HSeO₄: phenomenological treatment Condensed Matter Physics |
author_facet |
Kityk, A.V. Zadorozhna, A.V. |
author_sort |
Kityk, A.V. |
title |
Phase diagrams of incommensurate ferroelectric NH₄HSeO₄: phenomenological treatment |
title_short |
Phase diagrams of incommensurate ferroelectric NH₄HSeO₄: phenomenological treatment |
title_full |
Phase diagrams of incommensurate ferroelectric NH₄HSeO₄: phenomenological treatment |
title_fullStr |
Phase diagrams of incommensurate ferroelectric NH₄HSeO₄: phenomenological treatment |
title_full_unstemmed |
Phase diagrams of incommensurate ferroelectric NH₄HSeO₄: phenomenological treatment |
title_sort |
phase diagrams of incommensurate ferroelectric nh₄hseo₄: phenomenological treatment |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2000 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/120993 |
citation_txt |
Phase diagrams of incommensurate ferroelectric NH₄HSeO₄: phenomenological treatment / A.V. Kityk, A.V. Zadorozhna // Condensed Matter Physics. — 2000. — Т. 3, № 4(24). — С. 759-766. — Бібліогр.: 9 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT kitykav phasediagramsofincommensurateferroelectricnh4hseo4phenomenologicaltreatment AT zadorozhnaav phasediagramsofincommensurateferroelectricnh4hseo4phenomenologicaltreatment |
first_indexed |
2025-07-08T18:59:11Z |
last_indexed |
2025-07-08T18:59:11Z |
_version_ |
1837106360497471488 |
fulltext |
Condensed Matter Physics, 2000, Vol. 3, No. 4(24), pp. 759–766
Phase diagrams of incommensurate
ferroelectric NH4HSeO4:
phenomenological treatment
A.V.Kityk, A.V.Zadorozhna
Institute of Physical Optics, 23 Dragomanov Str., 79005 Lviv, Ukraine
Received April 17, 2000, in final form November 29, 2000
The phenomenological analysis of the pressure-temperature (P−T ) phase
diagram of NH4HSeO4 crystals is presented. It is shown that the disagree-
ment between the experimental results and the theory may be removed
assuming that the coefficient of the Landau free-energy expansion κ at the
gradient term (dq/dz)(dq∗/dz) changes the sign in the experimental range
of pressures. According to the present model the triple point observed in
NH4HSeO4 at PK ≈ 455 MPa, TK ≈ 236 K may be considered as artificial
points which result from the limitation of experimental resolution. There-
fore, even above PK there still exist two very close (unresolved) lines of the
incommensurate phase transitions.
Key words: phase diagram, critical point, incommensurate phase
PACS: 63.20.Dj, 64.70.Kb
External effects (electric field, mechanical stress, hydrostatic pressure, etc) es-
sentially distort the structure of incommensurate (IC) phases. In many cases they
lead to the appearance of a triple point in phase diagrams. Two lines of the IC
phase transitions (refered usually as normal (N)-IC and IC-commensurate (C) tran-
sition, respectively) merge in this point into one line of direct transitions from N- to
C-phase. The similar point has been revealed recently in the pressure-temperature
(P-T) phase diagram of the improper incommensurate ferroelectric NH4HSeO4 [1]. In
these crystals the phase transformation from N- to C-phase is associated with a two-
component order parameter (q1, q2) and Lifshitz invariant iδ(q1dq2/dz−q2dq1/dz) is
allowed by the symmetry. In the plane wave approximation it gives the linear (with
respect to wavevector k) contribution to the soft mode dispersion near a commen-
surate point kC:
ω2(k) = α+ 2δ(k − kC) + κ(k − kC)
2. (1)
The minimum ω2(k), thus, corresponds to the point ki = k0 − kC = −δ/κ.
Therefore if just only δ 6= 0, the direct second order phase transition N-C phase is
c© A.V.Kityk, A.V.Zadorozhna 759
A.V.Kityk, A.V.Zadorozhna
impossible. Accordingly, on the phase diagram only two types of polycritical points
are expected to occur:
(i) The condition α = δ = 0 defines the isolated point of direct second order phase
transition from N- to C-phase in α − δ phase plane. Such a point appears in the
intersection of two lines of phase transitions into IC-phase, i.e. it is the tetracritical
point [2].
(ii) In principal, a direct first order phase transition from N- to C-phase is pos-
sible. The corresponding phase diagram has been considered by Sannikov [3]. The
direct first order N-C transition appears at α = anc for β < 0 if αnc = β2/4γ > αi
(where β and γ are the free-energy coefficients at forth- and sixth-order terms, re-
spectively), thus, the condition αnc = αi defines the coordinates of the triple point
in the phase diagram. This point, however differs from the Lifshitz point, since the
wavevector of the IC-modulation, as well as the angle between the tangents to the
lines of IC phase transitions are finite in the triple point. Instead of this, only the
lines of the first order transitions αnc(σ) and αic(σ) (σ = β2/4γ − δ2/2κ) have a
common tangent in the triple point.
0 100 200 300 400 500
230
235
240
245
250
255
260
NH
4
HSeO
4
C-phase
IC-phase
N-phase
T
, K
P, MPA
Figure 1. The pressure-temperature phase diagram of NH4HSeO4 crystals [1].
It seems that none of these polycritical points have been revealed in P −T phase
diagram of NH4HSeO4 (figure 1) [1]. In particular, above PK ≈ 455 MPa the direct
phase transition from N- to C-phase is observed. However, the magnitude of the
jump of the elastic constant at the first order phase transition from the IC- to C-
phase (T = TC) critically decreases approaching PK [1], whereas the lines of N-C and
IC-C phase transitions do not have a common tangent in the triple point (PK, TK)
(figure 1). In fact, this contradicts to the prediction of the theory [3].
760
Phase diagrams of incommensurate ferroelectric
Considering the phase diagrams in the IC-systems I authors [2,3] have restricted
the free energy expansion by the first order gradient terms of the order parameter.
In this case only two types of the polycritical points are expected, which correspond
to the tetracritical or triple points. Within these theories it was assumed that co-
efficient κ at the gradient term (dq1/dz)(dq2/dz) is positive and not dependent on
the external effects. Obviously such an assumption restricts the behaviour of IC–
systems and results in a reduction of a number of possible types of polycritical points
in their phase diagrams. In fact, there are no physical reasons for such a restriction
and the coefficient κ for some real systems may change the sign at the experimental
range of the applied pressures P . In order to stabilize the Landau free energy we
must then include additional higher order gradient terms into the expansion. The
corresponding phase diagram in α − κ phase plane has been recently considered[4]
regarding TMATC-Cu crystals. It appears later that the application of this model
exactly to this crystals is not quite successful. According to the recent X-ray results
[5] the observed polycritical point in TMATC-Cu is indeed tetracritical point but
not the triple point as it was assumed in our previous work [4]. Nevertheless, the
appearance of the phase diagram described in this work is quite possible in other
crystals. It seems that one of such crystals is NH4HSeO4. At least up to now there
is no experimental evidence that the observed polycritical point in the P-T diagram
of these crystals is a tetracritical point. In this case the application of the modified
phenomenological model is inevitable.
Let us consider the free-energy expansion for NH4HSeO4 which contains a sixth-
order (n = 6) anisotropic invariant [6]:
F =
∫ L/2
−L/2
φ(z)dz,
φ(z) =
α
2
qq∗ +
β
4
(qq∗)2 +
γ1
6
(qq∗)3 −
γ2
12
(q6 + q∗6) +
iδ
2
(
q∗
dq
dz
− q
dq∗
dz
)
+
κ
2
dq
dz
dq∗
dz
−
iµ
2
(
q∗
d3q
dz3
− q
d3q∗
dz3
)
+
λ
2
d2q
dz2
d2q∗
dz2
− if(q3 − q∗3)P0
+
1
2χo
P 2
0 , (2)
where α = A0(T − T0) and β, δ, γ1, γ2, µ and λ are assumed to be positive. One
must remember that in the case of NH4HSeO4 crystal, the IC-phase appears in
the region Tc = 252 K < T < Ti = 262 K with the wavevector of IC modulation
k0 = c∗(1/3 − ξ), where ξ ≈ 0.019 [7]. The free energy density functional φ(z) in
equation (2) differs from [3,6] only by the presence of the two last terms, which
contain third and second order derivatives of the inhomogeneous two-component
order parameter (q(z), q∗(z)). For simplicity here we consider only one gradient
invariant (µ-term) which produces the contribution to the free energy proportional
to (k − kC)
3 (see below). Indeed, the free energy is stabilized by λ-term. Kind and
Muralt [8] have used the similar free energy expansion to explain the sequence of the
phase transitions in (NH3C3H7)2MnCl4. A trivial minimization procedure applied
761
A.V.Kityk, A.V.Zadorozhna
to equation (2) leads us to the following expressions for the free energy in the IC-
and C-phases:
FIC =
αk
2
qkq
∗
k +
β
4
(qkq
∗
k)
2 +
γ1
6
(qkq
∗
k)
3 −
γ2
2
(q5kQK ′′ + q∗5k Q
∗
K ′′)
+
αQ(K
′′)
2
QK ′′Q∗
K ′′ − if(q3kPK ′ − q∗3k P
∗
K ′) +
1
χo(K ′)
PK ′P ∗
K ′,
αk = α + 2δ(k − kC) + κ(k − kC)
2 + 2µ(k − kC)
3 + λ(k − kC)
4,
qk = qei(k−kc)z, q∗k = q∗e−i(k−kc)z, K ′ = c∗ − 3k, K ′′ = 2c∗ − 5k; (3)
FC =
α
2
qq∗ +
β
4
(qq∗)2 +
γ′1
6
(qq∗)3 −
γ′2
12
(q6 + q∗6),
q = reiψ, q∗ = re−iψ,
γ′1 = γ1 − 6χof
2, γ′2 = γ2 + 6χof
2, ψ = (2m+ 1)π/6, m = 0, 1, 2... (4)
The N-IC transition occurs at αi = A0(T − Ti) = αk(ki) = 0. The equilibrium
value of the incommensurate wavevector ki = |k0 − kC| = ξic
∗ at this second or-
der phase transition corresponds to the absolute minimum of αk in equation (3),
therefore it should be found from the condition:
∂αk/∂k = δ + κ(k − kC) + 3µ(k − kC)
2 + 2λ(k − kC)
3 = 0. (5)
The analytical solution of equation (5) is rather complicated, therefore we solved
it numerically for the case of NH4HSeO4 crystals. It is convenient to use the nor-
malized coupling constants δ ′ = δc∗, κ′ = κc∗2, µ′ = µc∗3 and λ′ = λc∗4 presenting
thus the incommensurate modulation by the dimensionless wave number ξ. Their
magnitude has been found in order to adjust the experimental value ξ i ≈ 0.019
for NH4HSeO4 at P = 0.1 MPa [7]. An interesting case occurs when the coeffi-
cient κ′ changes in the limits −κ′
m 6 κ′ 6 κ′m, which are defined by the conditions
|κ′m| ≈ λ′ξ2m and |κ′m| ≫ δ′/ξm; here ξm is the equilibrium value of the wave number
ξ at κ′ = −κ′m. The corresponding dependences αi(κ
′) = A0(T − Ti) and ξi(κ
′)
are presented in figure 2. As the parameter κ′ arises to its certain value, the wave
number ξi(κ
′) initially decreases rapidly and then gradually tends to zero; indeed it
approaches zero-value at κ′ → ∞.
The phase transition point αic = A0(T − Tc) from IC- to C-phase cannot be
exactly determined since it usually depends on a chosen approximation. In the sim-
ple soliton model, that is a second order, transition never occurs in a real crystal.
The inclusion of just only the mechanisms of the soliton-defects or soliton-lattice
interaction makes this transition discontinuous [9]. Accordingly, the magnitude of
αic can be approximately estimated using the condition F IC(αic) = FC(αic). Indeed
the free-energy expansion for the IC-phase (see equation (3)) can be reduced to a
more suitable form. The forth and the fifth terms in equation (3) are of the order of
(qq∗)5 and thus they can be neglected. Then eliminating the polarization PK ′ from
equation (3) one obtains:
FIC =
αk
2
qkq
∗
k +
β
4
(qkq
∗
k)
2 +
γ′1
6
(qkq
∗
k)
3, (6)
762
Phase diagrams of incommensurate ferroelectric
-4 -2 0 2 4
0
5
10
15
a)
-20
-15
-10
-5
0
5
b)
αi
αic C-phase
IC-phase
N-phase
κ'×10
-3
, arb.units
ξ i×
10
3 , a
rb
.u
ni
ts
α,
a
rb
.u
ni
ts
µ' = 3×104, λ' = 9.82×106
β = 2×10-3, γ
1
' =2×10-5,
γ
2
' =3×10-6, δ'= 6 ,
Figure 2. The calculated equilibriumwavenumber ξi of the incommensurate wave
on the αi-line (a) and calculated phase diagrams in the α − κ′ coordinate plane
(b). The values of the free-energy coefficients have been found in order to adjust
the experimental values ξi = 0.019 [7] and αic/αi ≈ 20 [1] for NH4HSeO4 at P =
0.1 MPa.
where γ′1 is defined by equation (4). The values of the free energy coefficients γ ′
1,
γ′2 and β have been chosen to adjust the ratio αic/αi ≈ 20 which follows from the
experiment for NH4HSeO4 crystals [1]. Obviously in this case γ ′
1 ≫ γ′2. The line
αic(κ
′) was calculated numerically (figure 2) for the given set of parameters. As
κ′ arises both the lines of N-IC and IC-C phase transitions approach and merge
at κ′ → ∞. It is evident, that in the infinity these lines have a common tangent,
whereas the wavevector of IC-modulation ki = ξic
∗ approaches a zero value.
The unusual phase diagram considered above does not contain any finite triple
point, which seems to be observed in the experiment (figure 1). The appearance of
this point can be attributed to the limitation of experimental resolution. There is
always a certain limit up to which both N-IC and IC-C lines can be observed sepa-
rately. It immediately becomes obvious if we present the phase diagrams in the P−T
coordinate plane (figure 3), which has been obtained assuming that the free energy
coefficients β, γ ′1, γ
′
2, λ
′, δ′, µ′ are nearly pressure independent. Some justification for
763
A.V.Kityk, A.V.Zadorozhna
0 100 200 300 400 500 600
230
240
250
260
κ'=a(P-P*),
a=1×10-5, P*=460 MPa
NH
4
HSeO
4
IC-phase
C-phase
N-phase
T
, K
P, MPa
Figure 3. The phase diagrams (figure 2) presented in the P −T coordinate plane
for NH4HSeO4 crystals. At sufficiently high pressures the lines of N-IC and IC-C
phase transitions cannot be experimentally resolved.
such an assumption follows from the fact, that the pressure behaviour of these coef-
ficients is at least not critical in the experimental range of pressures. Otherwise, the
appearance of the polycritical points of other types would be inevitable. One must
remember that P − T phase diagram of NH4HSeO4 crystals has been determined
from the ultrasonic measurements [1]. Taking into account a slightly smeared char-
acter of the elastic anomalies in the vicinity of both N-IC and IC-C transitions one
can estimate the limit of experimental resolution for T i and Tc as about 0.5 K. Since
above 455 MPa the lines of N-IC and IC-C phase transitions are separated by a tem-
perature interval smaller than 0.5 K, they cannot be experimentally resolved. Thus,
the triple point in the phase diagram (figure 1) can be considered as an artificial
point.
In conclusion, we have presented here the phenomenological analysis of the press-
ure-temperature phase diagram of NH4HSeO4 crystals. A serious disagreement be-
tween the experimental results and the theory can be removed assuming that this
compound shows the P − T phase diagram with an infinite Lifshitz point. An al-
ternative explanation for this phase diagram can be obtained assuming the exis-
tence of the tetracritical point at about 455 MPa. Precise X-ray experiments in this
temperature-pressure range would be quite desirable.
764
Phase diagrams of incommensurate ferroelectric
References
1. Kityk A.V., Vlokh O.G., Zadorozhna A.V., Czapla Z. On the pressure-temperature
phase diagram of NH4HSeO4 crystals: acoustical treatment. // Ferroelectrics Lett.,
1994, vol. 17, No. 1–2, p. 1–4.
2. Bruce A.D., Cowley R.A., Murray A.F. The theory of structurally incommensurate
systems. II. Commensurate-incommensurate phase transitions. // J. Phys. C.: Solid
State Phys., 1978, vol. 11, No. 17, p. 3591–3608.
3. Sannikov D.G. Lifshitz points for bidimensional representations. // Pisma JETP, 1979,
vol. 30, No. 3, p. 173–175.
4. Kityk A.V., Zadorozhna A.V., Mokry O.M., Sahraoui B. Infinite Lifshitz point in in-
commensurate type-I dielectrics. // Phys. Rev. B., 1999, vol. 60, No. 1, p. 10–13.
5. Shimomura S., Terauchi H., Hamaya N., Fujii Y. Multicritical point in structurally
incommensurate [N(CH3)4]2CuCl4. // Phys. Rev. B., 1996, vol. 54, No. 10, p. 6915–
6920.
6. Ishibashi Y. Phenomenology of incommensurate phases in the A2BX4 family. – In:
Incommensurate Phases in Dielectrics 2 (ed.by R. Blinc and A. P. Levanyuk), Elsevier
Science Publishers B.V., 1986, p. 49–69.
7. Denoyer F., Rozycki A., Parlinski K., More M. Neutron investigation of incommensu-
rability and metastability in NH4HSeO4 and ND4DSeO4. // Phys. Rev., 1989, vol. 39,
No. 1, p. 405–415.
8. Kind R., Muralt P. Unique Incommensurate-commensurate phase transitions in layer-
structure perovskite. – In: Incommensurate Phases in Dielectrics 2 (ed.by R. Blinc and
A. P. Levanyuk), Elsevier Science Publishers B.V., 1986, p. 301–318.
9. Cummins H.Z. Experimental studies of structurally incommensurate crystal phases. //
Phys. Rep., 1990, vol. 185, No. 5–6, p. 211–409.
765
A.V.Kityk, A.V.Zadorozhna
Фазові діаграми неспівмірного сегнетоелектрика
NH4HSeO4
А.В.Кітик, А.В.Задорожна
Інститут фізичної оптики, 79005 Львів, вул. Драгоманова, 23
Отримано 17 квiтня 2000 р., в остаточному виглядi –
29 листопада 2000 р.
Представлений феноменологічний аналіз фазової діаграми тиск-
температура (P − T ) кристалів NH4HSeO4. Показано, що неуз-
годження між експериментальними результатами і теорією може
бути зняте, припускаючи, що коефіцієнт κ при градієнтному члені
(dq/dz)(dq∗/dz)в розкладi вільної енергії Ландау змінює знак в області
прикладеного тиску. Відповідно до представленої моделі, потрійна
точка, спостережена в NH4HSeO4 приPK≈ 455 MPa, TK≈ 236 K, може
розглядатись як штучна точка, яка є результатом експериментально-
го обмеження. Отже, навіть вище PK ще існують дві дуже близькі лінії
неспівмірних фазових переходів.
Ключові слова: фазова діаграма, потрійна точка, неспівмірна фаза
PACS: 63.20.Dj, 64.70.Kb
766
|