Anisotropy of critical indices of ferroelectric phase transition in TGS crystals by the optical interference investigation

Temperature dependences of the optical path difference, variable part of the refractive index and thickness of triglycine sulphate crystal for three crystallophysic directions are studied in the temperature range of 39–70 °C, including the ferroelectric phase transition at Tc=49 °C, using the Jamen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:1999
Hauptverfasser: Andriyevsky, B.V., Myshchyshyn, O.Ya., Romanyuk, M.O.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 1999
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/121009
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Anisotropy of critical indices of ferroelectric phase transition in TGS crystals by the optical interference investigation / B.V. Andriyevsky, O.Ya. Myshchyshyn, M.O. Romanyuk // Condensed Matter Physics. — 1999. — Т. 2, № 4(20). — С. 693-702. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-121009
record_format dspace
spelling irk-123456789-1210092017-06-14T03:06:07Z Anisotropy of critical indices of ferroelectric phase transition in TGS crystals by the optical interference investigation Andriyevsky, B.V. Myshchyshyn, O.Ya. Romanyuk, M.O. Temperature dependences of the optical path difference, variable part of the refractive index and thickness of triglycine sulphate crystal for three crystallophysic directions are studied in the temperature range of 39–70 °C, including the ferroelectric phase transition at Tc=49 °C, using the Jamen type optical interferometer. Temperature dependences of the spontaneous changes of the characteristics studied in the range of 39–49 °C are fitted by the power-like low Y ∼ τ²β with doubled averaged effective critical indices 2β=0.87–0.95. The 2β values being different from the unity is explained by the essential temperature dependence of the coefficients of electrooptic, inverse piezoelectric and electrostriction effects in the range close to the phase transition point. Досліджено температурні залежності оптичної різниці ходу, змінної частини показника заломлення і товщини кристала тригліцинсульфату для трьох кристалофізичних напрямів в області температур 39– 70 °C, що містить температуру Tc=49 °C сегнетоелектричного фазового переходу, використовуючи оптичний інтерферометр типу Жамена. Температурні залежності спонтанних змін досліджуваних характеристик в області 39–49 °C апроксимовані степеневими залежностями Y ∼ τ²β з подвоєними засередненими ефективними критичними індексами 2β = 0.87 − 0.95. Відмінність 2β від одиниці пояснюється суттєвою температурною залежністю поблизу точки фазового переходу коефіцієнтів електрооптичного, оберненого п’єзоелектричного ефектів та електрострикції. 1999 Article Anisotropy of critical indices of ferroelectric phase transition in TGS crystals by the optical interference investigation / B.V. Andriyevsky, O.Ya. Myshchyshyn, M.O. Romanyuk // Condensed Matter Physics. — 1999. — Т. 2, № 4(20). — С. 693-702. — Бібліогр.: 7 назв. — англ. 1607-324X DOI:10.5488/CMP.2.4.693 PACS: 77.80.Bh, 77.84.Fa, 78.20.Ci http://dspace.nbuv.gov.ua/handle/123456789/121009 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Temperature dependences of the optical path difference, variable part of the refractive index and thickness of triglycine sulphate crystal for three crystallophysic directions are studied in the temperature range of 39–70 °C, including the ferroelectric phase transition at Tc=49 °C, using the Jamen type optical interferometer. Temperature dependences of the spontaneous changes of the characteristics studied in the range of 39–49 °C are fitted by the power-like low Y ∼ τ²β with doubled averaged effective critical indices 2β=0.87–0.95. The 2β values being different from the unity is explained by the essential temperature dependence of the coefficients of electrooptic, inverse piezoelectric and electrostriction effects in the range close to the phase transition point.
format Article
author Andriyevsky, B.V.
Myshchyshyn, O.Ya.
Romanyuk, M.O.
spellingShingle Andriyevsky, B.V.
Myshchyshyn, O.Ya.
Romanyuk, M.O.
Anisotropy of critical indices of ferroelectric phase transition in TGS crystals by the optical interference investigation
Condensed Matter Physics
author_facet Andriyevsky, B.V.
Myshchyshyn, O.Ya.
Romanyuk, M.O.
author_sort Andriyevsky, B.V.
title Anisotropy of critical indices of ferroelectric phase transition in TGS crystals by the optical interference investigation
title_short Anisotropy of critical indices of ferroelectric phase transition in TGS crystals by the optical interference investigation
title_full Anisotropy of critical indices of ferroelectric phase transition in TGS crystals by the optical interference investigation
title_fullStr Anisotropy of critical indices of ferroelectric phase transition in TGS crystals by the optical interference investigation
title_full_unstemmed Anisotropy of critical indices of ferroelectric phase transition in TGS crystals by the optical interference investigation
title_sort anisotropy of critical indices of ferroelectric phase transition in tgs crystals by the optical interference investigation
publisher Інститут фізики конденсованих систем НАН України
publishDate 1999
url http://dspace.nbuv.gov.ua/handle/123456789/121009
citation_txt Anisotropy of critical indices of ferroelectric phase transition in TGS crystals by the optical interference investigation / B.V. Andriyevsky, O.Ya. Myshchyshyn, M.O. Romanyuk // Condensed Matter Physics. — 1999. — Т. 2, № 4(20). — С. 693-702. — Бібліогр.: 7 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT andriyevskybv anisotropyofcriticalindicesofferroelectricphasetransitionintgscrystalsbytheopticalinterferenceinvestigation
AT myshchyshynoya anisotropyofcriticalindicesofferroelectricphasetransitionintgscrystalsbytheopticalinterferenceinvestigation
AT romanyukmo anisotropyofcriticalindicesofferroelectricphasetransitionintgscrystalsbytheopticalinterferenceinvestigation
first_indexed 2025-07-08T19:01:01Z
last_indexed 2025-07-08T19:01:01Z
_version_ 1837106476540231680
fulltext Condensed Matter Physics, 1999, Vol. 2, No. 4(20), pp. 693–702 Anisotropy of critical indices of ferroelectric phase transition in TGS crystals by the optical interference investigation B.V.Andriyevsky, O.Ya.Myshchyshyn, M.O.Romanyuk The Ivan Franko National University of Lviv, 8 Kyryla and Mefodiya Str., 79005 Lviv, Ukraine Received January 13, 1999, in final form September 14, 1999 Temperature dependences of the optical path difference, variable part of the refractive index and thickness of triglycine sulphate crystal for three crystallophysic directions are studied in the temperature range of 39–70 ◦C, including the ferroelectric phase transition at Tc=49 ◦C, using the Jamen type optical interferometer. Temperature dependences of the spontaneous changes of the characteristics studied in the range of 39–49 ◦C are fitted by the power-like low Y ∼ τ2β with doubled averaged effective critical indices 2β=0.87–0.95. The 2β values being different from the unity is explained by the essential temperature dependence of the coefficients of electrooptic, inverse piezoelectric and electrostriction effects in the range close to the phase transition point. Key words: ferroelectrics, phase transition, optical properties, critical indices PACS: 77.80.Bh, 77.84.Fa, 78.20.Ci 1. Introduction It is known, that the critical behaviour of the spontaneous polarization Ps at the 2nd order phase transition (PT) in a crystal can be described by the critical index β, Ps ∼ (Tc − T )β, (1) where Tc is the PT temperature [1]. Here, index β can be treated as asymptotic or effective one [2]. The effective critical index βeff is determined to be the derivative βeff(τ) = d[ln(Ps)]/d[ln τ ], (2) taken at some temperature T < Tc. Here, τ = (Tc − T )/Tc. The effective critical index βeff is becoming the asymptotic one, when the value τ is approaching zero c© B.V.Andriyevsky, O.Ya.Myshchyshyn, M.O.Romanyuk 693 B.V.Andriyevsky, O.Ya.Myshchyshyn, M.O.Romanyuk (τ < 10−3) [2]. On the other hand, experimental temperature dependences of crystal parameters in the range of PT can be also presented with the help of coefficients of thermo- dynamic potential expansion. According to the Landau theory, the elastic Gibbs energy G1 in the case of uniaxial ferroelectric can be expressed in the polynomial form G1 = 1 2 AD2 + 1 4 BD4 + 1 6 CD6, (3) where D is electric displacement, A, B and C are coefficients [3]. Here, the energy is measured from the non-polar phase and the polynomial is arbitrarily terminated at D6. Dielectric state equation E = ∂G1/∂D takes the following form E = AD +BD3 + CD5, (4) where E is electric field. In the first approximation, which is in many cases satisfying, we assume: A = A0(T − Tc). (5) Coefficient A0 is usually determined from the measurements of dielectric constant as a function of temperature in the paraelectric (PE) phase. In the ferroelectric (FE) phase the coefficients B and C can be determined from the temperature dependence of Ps (E=0,D=Ps). The equation of dielectric state (3) can be now written as follows P 2 s = (B/2C) { [ 1 + 4A0(Tc − T )C/B2 ](1/2) − 1 } . (6) To characterize the order of PT, the parameter V = B2/A0C can be used [3]. The physical sense of this parameter is clearly visible in the description of the first-order PT. The polarized state becomes stable at the temperature T0 = Tc+3/16(B2/A0C), whereas the upper limit of a superheating is T1 = Tc + B2/4A0C. When the first- order PT comes near the second-order PT, the absolute value of V decreases at the tricritical point T0 = T1 = Tc. Both sets of parameters, index 2β in formulae (1), and coefficients A, B, and C in formulae (6), can be used for the approximation of temperature dependences of spontaneous polarization of ferroelectrics near the PT point. In the first five columns of table 1 the parameter V as well as the parameters A0, B, C of the equation of state for some ferroelectric crystals are presented [3]. Based on the values of coefficients A, B and C presented in table 1, we have calculated the temperature dependences of spontaneous polarization Ps(T ) by the formula (6) in the range of 312–322 K. Then, using the dependence Ps(T ) obtained, we have calculated the corresponding effective critical index βeff averaged in this temperature range using the formula (2). Experimental temperature changes of the optical path difference determined by birefringence, D = l∆n, are frequentely identified in practice with the changes of the birefringence ∆n. But the thickness l and birefringence ∆n can have different temperature dependences. The temperature dependences of D(T ) and l(T ) are usu- ally investigated in different experiments. This restricts the accuracy of determining 694 Anisotropy of critical indices Table 1. Coefficients A, B and C of the equation of dielectric state (6), coeffi- cient V [3], and the corresponding averaged effective critical index βeff for some ferroelectrics calculated in the temperature range of (Tc − T )=10 K Here: TGS – (NH2CH2COOH)3·H2SO4 ; TGSe – (NH2CH2COOH)3·H2SeO4 ; DTGS47% – 47% deuterated TGS crystal ; DGN – (NH2CH2COOH)2·HNO3 ; DMAAS – (CH3)2NH2Al(SO4)2·6H2O ; MAPBB – (CH3NH3)5Bi2 Br11 ; MAPCB – (CH3NH3)5Bi2Cl11 ; TAAP – |Te(OH)6|·2|NH4H2PO4| ·|(NH4)2HPO4| ; CDP – CsH2PO4. Crystal A0 [Vm/K] B [Vm5/C3] C [Vm9/C5] V = B2/A0C βeff TGS 3.7 · 107 7.5 · 1011 5 · 1015 3.03 0.38 TGSe 2.63 · 107 3.97 · 1010 3 · 1014 0.20 0.30 DTGS47% 3.4 · 108 3.1 · 1011 1 · 1015 2.76 0.30 DGN 1.26 · 107 6.1 · 1013 9.5 · 1015 3 · 103 0.50 DMAAS 3.69 · 107 3.5 · 1011 4.2 · 1015 0.79 0.33 MAPBB 5.57 · 107 1.64 · 1012 2.6 · 1016 1.88 0.36 MAPCB 11.56 · 107 7.2 · 1012 2.4 · 1017 1.88 0.37 TAAP 2.97 · 107 6.9 · 1011 1.5 · 1015 10.38 0.44 CDP 1.56 · 106 1.32 · 109 1.5 · 1013 0.07 0.28 the corresponding dependence of ∆n(T ) and l(T ), and makes it complicated to com- pare these different parameters of crystal in the region of PT. We have suggested the techniques of simultaneous determination of temperature dependences of the variable part of the refractive index (n− 1) and the thickness l of a sample. Temperature dependences of the refractive indices and the linear thermal expan- sion of TGS in the range of PT have already been studied [4–6], but the correspond- ing critical indices have not been determined. The goals of the present investigation were the precise measurements of the temperature dependences of optical path dif- ference (OPD) determined by the refractive index for TGS crystal in the range of 2nd order PT at 322K, calculating the temperature dependences of refractive in- dices and linear thermal expansion for the principal crystallophysic directions, as well as the study of these dependences using the corresponding effective critical indices 2βeff . 2. Experimental Temperature dependences of OPD, D = l(n − 1), determeined by the variable part of refractive index (VPRI), (n − 1) = η, for two interfering beams, one of which has passed through a sample studied, and the other one through the air, were measured using the Jamen type home built interferometer (figure 1). In this case, the OPD D and its temperature dependence D(T ) can be written as follows D = l(n− 1) = lη, D(T ) = l(T )η(T ), (7) 695 B.V.Andriyevsky, O.Ya.Myshchyshyn, M.O.Romanyuk where l is thickness of a sample. The laser light of the wavelength λ=632.8 nm was used in the experiment. 0 2 4 6 0 2 4 6 8 1 0 9 1 9 2 3 9 8 9 3 7 999 4 10 � Figure 1. Scheme of the experiment: 1 – He-Ne laser; 2 – polarizer; 3 – glass plates of Jamen type interferometer; 4 – sample; 5 – diaphragms; 6 – photodiodes; 7 – thermocouple; 8 – thermostat (furnace); 9 – electrical supply block; 10 – recording block. Proceeding from the relation (6), the temperature changes of relative OPD ∆D/D along three crystallophysic directions can be written in the form of a system of linear equations ∆Dij Dij = ∆li li + ∆ηj ηj , (i, j = 1, 2, 3; i 6= j), (8) where index i denotes the direction of light propagation, index j denotes the direc- tion of light polarization. Based on the six temperature dependences ∆D ij/Dij mea- sured we have determined the relative temperature changes of the thickness ∆li/li and VPRI ∆ηj/ηj [7]. The results of the corresponding computer calculations have shown that the relative errors of the temperature changes determination of thickness δli/li and VPRI δηj/ηj caused by solving the system (8) did not exceed 5% of the respective maximum magnitudes ∆li/li and ∆ηj/ηj for the case of TGS crystal. The initial li and ηj values were measured independently at the initial temperature T0. In our case (l ≈ 5 mm and n ≈ 1.5) the error of determining the interference order was δm(T ) 6 1/4, which corresponds to the errors of δD/D ∼ δl/l ∼ δη/η ∼ 10−5. 3. Results and discussion Temperature dependences of the relative changes of OPD ∆Dij/Dij for TGS crystal are shown in figure 2. Refractive indices nj(T0) of TGS crystal were taken from the paper [6]. The forms of temperature dependences of the thickness ∆li/li 696 Anisotropy of critical indices 20 30 40 50 60 70 -60 -40 -20 0 20 40 32 31 23 21 13 12 10 4 ( ∆ D i j / D i j ) T (oC) Figure 2. Experimental temperature dependences of the relative changes of the optical path difference ∆Dij/Dij of TGS crystal (indices ij indicate the corre- sponding curves) and VPRI δηj/ηj calculated from the system of equations (8) are characterized by the similar anomalies at PT temperature. Based on the known relation for the temperature changes of the order parameter p = Ps for 2nd order PT in the range of T < Tc, ∆Ys ∼ P 2 s ∼ τ 2β = ( Tc − T Tc − Tmin )2β , (9) we have calculated the double effective critical indices 2β averaged in the range of 39–49 ◦C, replacing P 2 s value by the spontaneous increases of ∆Ys(T )/∆Ys(Tmin) (Y=D, l and η). Here Tc=49 ◦C is the temperature of PT, Tmin is the lower edge of the temperature range studied (Tmin=39 ◦C in our case), ∆Ys(T ) and ∆Ys(Tmin) are spontaneous increments corresponding to the Tc and Tmin temperatures. The double critical indices 2β of TGS in the range of 39–49 ◦C are shown in table 2. Table 2. Effective critical indices 2β, corresponding to the temperature depen- dences of spontaneous increments of ∆Ds/D, ∆ls/l and ∆ηs/η for different crys- tallophysic direction of TGS crystal 2β (D) 12 2β (D) 13 2β (D) 21 2β (D) 23 2β (D) 31 2β (D) 32 0.90 0.90 0.89 0.89 0.95 0.92 2β (l) 1 2β (l) 2 2β (l) 3 2βη 1 2βη 2 2βη 3 0.91 0.90 0.92 0.88 0.93 0.88 The results obtained testify to an inexact fulfilment of the functional dependences for quadratic electrooptic effect ∆ns ∼ P 2 s (10) 697 B.V.Andriyevsky, O.Ya.Myshchyshyn, M.O.Romanyuk and electrostriction ∆ls ∼ P 2 s . (11) If these effects were displayed in the form indicated, the double critical index 2β would be equal to unity, 2β=1. Let us try to explain the experimental facts obtained. Analytical relation of the observed temperature dependence of OPD ∆Ds/D induced by spontaneous polarization can be presented in the most common form ∆Ds/D(τ) = a(τ)P 2 s (τ) = a(τ)τ, (12) where a(τ) is the temperature dependent coefficient. It follows from the character of experimental dependences of spontaneous increases of ∆Ds/D, ∆ls/l, and ∆ηs/η, that the corresponding coefficients a(τ) are maximal in the region of PT (figure 3). 0.0 0.5 1.0 0.8 1.2 1.6 d( ∆ D s3 2/ D 32 )/ dτ τ=(T c -T)/T c Figure 3. Temperature dependence of the derivative d(∆Ds32/D32)/dτ in the ferroelectric phase of TGS crystal To obtain the additional proofs of the validity of this viewpoint, we have per- formed experimental study of the artificially induced electrooptic effect in TGS crys- tal in the temperature range of 30–65 ◦C. This investigation was carried out using the same optical scheme. The external electric field of the magnitude E ≈ 3.5 kV/cm was applied to the sample of TGS crystal at different temperatures along the [010]- direction of spontaneous polarization Ps, and the corresponding induced increments of the OPD ∆De/D were measured. The maximum-like temperature dependence of ∆De/D value (figure 4) correlates well with the temperature dependence of a(τ) in the ferroelectric phase. This maximum-like character of the coefficient mentioned is connected with the inequality 2β < 1. Taking into account that the temperature dependences of spontaneous incre- ments of ∆Ys/Y parameters can be presented in two forms, Y (τ) = τ 2β , and Y (τ) = a(τ)τ , one can obtain the relation for the temperature dependence of a(τ) coefficient a(τ) = τ 2β−1. (13) In the cases of 2β 6= 1 and τ 6= 1, the decreasing temperature dependence of the coefficient a(τ) takes place in the ferroelectric phase at the removal from the PT point τ = 0 (figure 3). 698 Anisotropy of critical indices 35 40 45 50 55 60 65 0.00 0.01 0.02 0.03 ∆ D e3 2/ D 32 T (oC) Figure 4. Temperature dependence of the relative optical path difference ∆De32/D32 of TGS crystal induced by the constant electric field of 3.5 kV/cm along the [010]-direction Taking into account all the results obtained, we can summarize that the temper- ature dependences of the coefficients of quadratic electrooptic and electrostriction effects for TGS crystals take place (see relations (10) and (11)). The analysis of table 1 testifies to some segregation of the [010]-direction of spontaneous polariza- tion. Really, among the temperature changes of spontaneous increments ∆li and ∆ηj (i, j = 1, 2, 3), the dependence ∆l2(τ) is characterised by the least index 2β while the dependence ∆n2(τ) is characterised by the greatest index (see table 2). On the other hand, a proximity of the values 2β (l) 2 ≈ 2βη 2 is observed (see table 1), whereas obvious inequalities of similar characteristics for the other two crystallo- physic directions 2β (l) 1,3 > 2βη 1,3 take place (see table 2 and figure 4). The latter features can be interpreted as a different rate of the ordering of two subsystems. One subsystem relates to the electrons forming the refractive index n while the other is connected with geometric parameters of the crystal unit cell for the directions [100] and [001]. The equality 2β (l) 2 ≈ 2βη 2 for the direction of spontaneous polarization [010] can be interpreted as good correlation of the subsystems in TGS crystal mentioned above. From such a viewpoint, the observable inequalities of the indices 2β (l) 1,3 > 2βη 1,3 testify to various rates of the temperature changes of the corresponding subsystems of the crystal in the temperature range (∆T ∼ 10 ◦C) below PT point. It is seen in figure 5, in case of z-direction of the crystal studied. A crossing of the curves on figure 6 corresponds to two different indices β (l) 3 and βη 3 . Such a crossing will take place in all cases if the experimental temperature dependence of the parameters studied (V = ∆Ds/D, ∆ls/l, ∆ηs/η) is described by different indices β. We suppose that such a peculiarity in the temperature dependence of different parameters can be characteristic of the ordering of the other ferroelectric crystals. 699 B.V.Andriyevsky, O.Ya.Myshchyshyn, M.O.Romanyuk 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 n 3 l 3 δy s( T )/ δy s( T m in ) (T c -T)/(T c -T min ) Figure 5. Dependences of the normalized spontaneous changes of thickness (l3) and changes of the variable part of refractive index (η3) of TGS for [001]-direction on the normalised temperature (Tc − T )/(Tc − Tmin) in the range of 39–49 ◦C 0.0 0.5 1.0 0.5 1.0 1.5 2.0 dη 3 /dτ dl 3 /dτ dV /d τ τ=(T c -T)/(T c -T min ) Figure 6. Temperature derivatives of the dependences from figure 5 700 Anisotropy of critical indices 4. Conclusion 1. The original laser interferometer techniques of Jamen type for measuring the temperature change of the optical path difference of a transparent sample is offered. The techniques makes it possible to define the temperature depen- dences of thickness l(T ) and the variable part of refractive index [n(T ) − 1] of the crystal based on the measurements of temperature dependences of the optical path difference D(T ) = l(T )[n(T ) − 1] for different directions of light propagation and polarization. 2. Deviation from the unity of the double effective critical index 2β for the tem- perature dependence of the optical path difference induced by a spontaneous polarization in TGS sample is explained by a significant temperature depen- dence of the maximum-like character of the coefficient of electrooptic, inverse piezooptic, and electrostriction effects. 3. An anisotropy of the critical indices 2β (l) i and 2β (η) i , and nonequality 2β (l) i 6= 2β (η) i testify to different rates of temperature changes of different crystal sub- systems taking place at the ferroelectric ordering in the range of ∆T ∼ 10 ◦C below Tc. References 1. Lines M.E., Glass A.M. Principles and Application of Ferroelectrics and Related Ma- terials. Oxford, Clarendon Press, 1977. 2. Dunlop R.A., Gottlieb A.M. Critical behaviour of the site random Ising antiferromagnet Mn1−xZnxF2. // Phys. Rev. B., 1981, vol. 23, No. 11, p. 6106–6110. 3. Cach R. Dielectric Non-Linear Properties of Some Real Ferroelectric Crystals. Wroclaw, Wroclaw University Publ., 1992. 4. Sonin A.S., Vasilevskaya A.S. Electrooptical Crystals. Moscow, Atomizdat Publ., 1971 (in Russian). 5. Lomova L.G., Sonin A.S., Regulskaya T.A. Spontaneous electrooptic effect in the triglycine sulphate single crystals. // Kristallografiya, 1968, vol. 13, No. 1, p. 90–94 (in Russian). 6. Romanyuk N.A., Kostetskii A.M., Andrievskii B.V. Dispersion of the refractive index and some characteristics of absorption spectra for triglycine sulphate crystal’s group. // Phys. Solid State, 1977, vol. 19, No. 10, p. 1809–1812 (in Russian). 7. Malyshev A.N. Introduction Into Calculational Linear Algebra. Novosibirsk, Nauka Publ., 1991 (in Russian). 701 B.V.Andriyevsky, O.Ya.Myshchyshyn, M.O.Romanyuk Анiзотропiя критичних iндексiв сегнетоелектричного фазового переходу в кристалах ТГС визначена з оптико-інтерференційних досліджень Б.В.Андрiєвський, О.Я.Мищишин, М.О.Романюк Львівський національний університет ім. І.Франка, 79005 Львів, вул. Кирила і Мефодія, 8 Отримано 13 січня 1999 р., в остаточному вигляді – 14 вересня 1999 р. Досліджено температурні залежності оптичної різниці ходу, змінної частини показника заломлення і товщини кристала тригліцинсуль- фату для трьох кристалофізичних напрямів в області температур 39– 70 ◦C, що містить температуру Tc=49 ◦C сегнетоелектричного фазо- вого переходу, використовуючи оптичний інтерферометр типу Жа- мена. Температурні залежності спонтанних змін досліджуваних ха- рактеристик в області 39–49 ◦C апроксимовані степеневими залеж- ностями Y ∼ τ2β з подвоєними засередненими ефективними кри- тичними індексами 2β = 0.87 − 0.95. Відмінність 2β від одиниці по- яснюється суттєвою температурною залежністю поблизу точки фа- зового переходу коефіцієнтів електрооптичного, оберненого п’єзо- електричного ефектів та електрострикції. Ключові слова: сегнетоелектрики, фазові переходи, оптичні властивості, критичні індекси PACS: 77.80.Bh, 77.84.Fa, 78.20.Ci 702