Investigation of dielectric properties of LixNa₁₋xNbO₃ ceramics for x = 1 and x=4

The a.c. electrical response of LixNa₁₋xNbO₃ (LNN) solid solution in low frequency range (100 Hz–20 kHz) has been analysed as a function of temperature (300 K–750 K). A complex picture of the dependence of the studied properties on the chemical composition has been obtained. The data indicate the pr...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1999
Автори: Bak, W., Garbarz, B., Smiga, W., Kus, C.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 1999
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121017
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Investigation of dielectric properties of LixNa₁₋xNbO₃ ceramics for x = 1 and x=4 / W. Bak, B. Garbarz, W. Smiga, C. Kus // Condensed Matter Physics. — 1999. — Т. 2, № 4(20). — С. 727-730. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-121017
record_format dspace
spelling irk-123456789-1210172017-06-14T03:05:53Z Investigation of dielectric properties of LixNa₁₋xNbO₃ ceramics for x = 1 and x=4 Bak, W. Garbarz, B. Smiga, W. Kus, C. The a.c. electrical response of LixNa₁₋xNbO₃ (LNN) solid solution in low frequency range (100 Hz–20 kHz) has been analysed as a function of temperature (300 K–750 K). A complex picture of the dependence of the studied properties on the chemical composition has been obtained. The data indicate the presence of relaxation and transport processes as well as their thermally activated character. Досліджено електричний відгук в змінному полі твердих розчинів LixNa₁₋xNbO₃ (LNN) як функцію температури (300 K–750 K) в низькочастотній області (100 Hz–20 kHz). Отримано комплексну картину залежності досліджених величин від хімічного складу. Отримані дані свідчать про наявність релаксаційних і транспортних процесів та про тепловий характер їх активації. 1999 Article Investigation of dielectric properties of LixNa₁₋xNbO₃ ceramics for x = 1 and x=4 / W. Bak, B. Garbarz, W. Smiga, C. Kus // Condensed Matter Physics. — 1999. — Т. 2, № 4(20). — С. 727-730. — Бібліогр.: 8 назв. — англ. 1607-324X DOI:10.5488/CMP.2.4.727 PACS: 77.84.Dy, 77.22.-d http://dspace.nbuv.gov.ua/handle/123456789/121017 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The a.c. electrical response of LixNa₁₋xNbO₃ (LNN) solid solution in low frequency range (100 Hz–20 kHz) has been analysed as a function of temperature (300 K–750 K). A complex picture of the dependence of the studied properties on the chemical composition has been obtained. The data indicate the presence of relaxation and transport processes as well as their thermally activated character.
format Article
author Bak, W.
Garbarz, B.
Smiga, W.
Kus, C.
spellingShingle Bak, W.
Garbarz, B.
Smiga, W.
Kus, C.
Investigation of dielectric properties of LixNa₁₋xNbO₃ ceramics for x = 1 and x=4
Condensed Matter Physics
author_facet Bak, W.
Garbarz, B.
Smiga, W.
Kus, C.
author_sort Bak, W.
title Investigation of dielectric properties of LixNa₁₋xNbO₃ ceramics for x = 1 and x=4
title_short Investigation of dielectric properties of LixNa₁₋xNbO₃ ceramics for x = 1 and x=4
title_full Investigation of dielectric properties of LixNa₁₋xNbO₃ ceramics for x = 1 and x=4
title_fullStr Investigation of dielectric properties of LixNa₁₋xNbO₃ ceramics for x = 1 and x=4
title_full_unstemmed Investigation of dielectric properties of LixNa₁₋xNbO₃ ceramics for x = 1 and x=4
title_sort investigation of dielectric properties of lixna₁₋xnbo₃ ceramics for x = 1 and x=4
publisher Інститут фізики конденсованих систем НАН України
publishDate 1999
url http://dspace.nbuv.gov.ua/handle/123456789/121017
citation_txt Investigation of dielectric properties of LixNa₁₋xNbO₃ ceramics for x = 1 and x=4 / W. Bak, B. Garbarz, W. Smiga, C. Kus // Condensed Matter Physics. — 1999. — Т. 2, № 4(20). — С. 727-730. — Бібліогр.: 8 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT bakw investigationofdielectricpropertiesoflixna1xnbo3ceramicsforx1andx4
AT garbarzb investigationofdielectricpropertiesoflixna1xnbo3ceramicsforx1andx4
AT smigaw investigationofdielectricpropertiesoflixna1xnbo3ceramicsforx1andx4
AT kusc investigationofdielectricpropertiesoflixna1xnbo3ceramicsforx1andx4
first_indexed 2025-07-08T19:01:47Z
last_indexed 2025-07-08T19:01:47Z
_version_ 1837106523851980800
fulltext Condensed Matter Physics, 1999, Vol. 2, No. 4(20), pp. 727–730 Investigation of dielectric properties of LixNa1−xNbO3 ceramics for x = 1 and x = 4 W.Ba̧k, B.Garbarz, W.Śmiga, C.Kuś Institute of Physics and Computer Science, Pedagogical University, 2 Podchora̧żych Str., 30-084 Kraków, Poland Received September 1, 1998 The a.c. electrical response of LixNa1−xNbO3 (LNN) solid solution in low frequency range (100 Hz–20 kHz) has been analysed as a function of tem- perature (300 K–750 K). A complex picture of the dependence of the stud- ied properties on the chemical composition has been obtained. The data indicate the presence of relaxation and transport processes as well as their thermally activated character. Key words: LixNa1−xNbO3, ceramics, dielectric properties PACS: 77.84.Dy, 77.22.-d 1. Introduction Dependence of dielectric properties of Li x Na1−x NbO3 (LNN) solid solution on its chemical composition is well known. In particular, phase transformation, conduc- tivity and dielectric permittivity of LNN have been studied [1–3]. However, some discrepancies in the results are observed, and more systematic studies should be undertaken to establish relations of the properties to the composition of the solid solution. The system NaNbO3–LiNbO3 is of interest, especially as Li content in LNN in- creases. These materials would be good candidates for the fabrication of piezoelectric and piroelectric components for high temperature purposes. The investigated polycrystalline sample was obtained using the conventional ce- ramic technology. The application of a.c. measurements method enables us to observe the polarization processes and to gain the information about the charge transport mechanism. c© W.Ba̧k, B.Garbarz, W.Śmiga, C.Kuś 727 W.Ba̧k et al. 2. Experimental The ceramic samples of LNN used in our measurements had the shape of disks of 8–9 mm diameter and 2–3 mm thickness. Samples with sputter deposited Pt- electrodes were used in our measurements. All the experiments have been performed under normal atmospheric conditions. The temperature of the samples, in the range between 300 K and 800 K, was measured by means of a chromel-alumel thermocouple with 0.5 K accuracy. The dielectric measurements were performed by means of RLC meter (model BM 595) at different fixed frequencies between 100 Hz and 20 kHz. In all measurements the RLC meter was set to a parallel mode. 3. Results and discussion The real part of the dielectric permittivity ε as a function of the temperature for two measurement frequencies (1kHz and 10kHz) is shown in figure 1a for Li-content x=0.01 and in figure 1b for Li-content x=0.04. As the content of Li increases ε generally increases. The thermal hysteresis of permittivity for two Li-contents when measurements are made at the increasing and the decreasing temperature is due to the observed thermal hysteresis of the dielectric anomaly caused by the antiferroelectric-parael- ectric (A-P) phase transition of NaNbO3 [4]. There is a small shift (cooling process) of the temperature of the ε-maximum to lower temperatures with the increasing Li-content. The behaviour of tan δ as a function of the temperature changes with the fre- quency, as it is shown in figure 2a for Li-content x=0.01 and in figure 2b for Li- content x=0.04. For low frequency (<1kHz) there is a fast increase of tan δ above 600 K. In the whole range of the investigated temperatures the value of tan δ de- creases with the increase of frequency. Figures 3a,b show the conductivity σ versus temperature for different measure- ment frequencies and different Li-contents ((3a) x=0.01 and (3b) x=0.04). For Li- content of x=0.01 there is a minimum at T=400 K, which tends to disappear as the 0 200 400 600 800 1000 1200 1400 1600 1800 2000 350 400 450 500 550 600 650 700 750 T[K] e 1 kHz cooling 10 kHz cooling 1 kHz heating 10 kHz heating a) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 300 350 400 450 500 550 600 650 700 750 T [K] e 1kHz cooling 10kHz cooling 1kHz heating 10kHz heating b) Figure 1. Real value of the permittivity ε as a function of the temperature at two measurement frequencies for: (a) LNN, x=0.01; (b) LNN, x=0.04. 728 Dielectric properties of LixNa1−xNbO3 ceramics 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 350 400 450 500 550 600 650 700 750 T [K] tg d 1 kHz 4 kHz 10 kHz a) 0,0 0,1 0,2 0,3 0,4 300 350 400 450 500 550 600 650 700 750 T [K] tg d 1 kHz 4 kHz 10 kHz b) Figure 2. Temperature dependencies of tan δ at several measurement frequencies for: (a) LNN, x=0.01; (b) LNN, x=0.04. frequency and Li-content increases. The low frequency (<1kHz) and low tempera- ture (<400 K) change in the temperature coefficient of the conductivity with the appearance of a minimum (figure 3a) was also found in lithium [5] and sodium [6] niobates and sodium tantalate [7] at the similar temperature and lower frequencies (1 mHz to 1 Hz). The minimum in conductivity could be related to the possible existence of conduction mechanism of small polarons (i.e., localized charge carriers permitted by a certain degree of structural disorder or polarizability of the surround- ings of the charge carriers [8]) at low temperature. At low temperatures the short range tunnelling gives place to conductivity values corresponding to long range hop- ping, with higher activation energy that would correspond to higher temperatures due to a low mobility of these localized charge carriers. The minimum in the thermal behaviour of ε is, therefore, explained as the result of the change in the conductivity mechanism, from tunnelling to hopping, from short range to long range mechanisms, at this temperature [6]. References 1. Kuś C., Ptak W.S., Śmiga W., Ba̧k W. Temperature dependence of dielectric properties of nonstoichiometric NaNbO3. // Acta Universitatis Wratislaviensis, 1988, No. 1084, p. 169-175. 2. Jankowska I., Krzywanek K., Kuś C. The investigation of metastable states in Na1−xLixNbO3 polycrystals near the diffused phase transition. // Ferroelectrics, 1992, vol. 127, No 4, p. 83-88. -25 -24 -23 -22 -21 -20 -19 -18 -17 1,3 1,5 1,7 1,9 2,1 2,3 2,5 2,7 2,9 3,1 1000/T [1/K] a) -24 -23 -22 -21 -20 -19 -18 -17 1,3 1,5 1,7 1,9 2,1 2,3 2,5 2,7 2,9 1000/T [1/K] b) Figure 3. Conductivity σ as a function of the temperature at two measurement frequencies for: (a) LNN, x=0.01; (b) LNN, x=0.04. 729 W.Ba̧k et al. 3. Pardo L. et al. Temperature behaviour of structural, dielectric and piezoelectric prop- erties of sol-gel processed ceramics of the system LiNbO3-NaNbO3. // J. Phys. Chem. Solids, 1997, vol. 58, No 9, p. 1335-1339. 4. Kuś C., Ba̧k W., Ptak W.S., Śmiga W. Antiferroelectric- paraelectric phase transfor- mation in nonstoichiometric NaNbO3. // Ferroelectrics, 1988, vol. 81, p. 277-280. 5. Ba̧k W., Kuś C., Ptak W.S., Śmiga W. Very low frequency study on transport and relaxation phenomena in LiNbO3 single crystal. // Ferroelectrics, 1992, vol. 126, p. 179- 184. 6. Ba̧k W., Kuś C., Ptak W.S. The transport properties of polycrystalline NaNbO3 deter- mined from immitance spectra at very low frequencies. // Ferroelectrics, 1991, vol. 115, p. 105-111. 7. Aleksandrowicz A., Wójcik K. Electrical properties of single crystals and ceramic sam- ples of NaTaO3. // Ferroelectrics, 1989, vol. 99, p. 105-113. 8. Jonscher A.K. Dielectric Relaxation. London, Chelsea Dielectric Press, 1993. Дослідження діелектричних властивостей LixNa1−xNbO3 керамік у випадках x = 1 і x = 4 В.Бонк, Б.Гарбаж, В.Сьміга, Ч.Кусь Інститут фізики та обчислювальної техніки, Педагогічний університет, Польща, 30-084 Краків, вул. Подхоронжих, 1 Отримано 1 вересня 1998 р. Досліджено електричний відгук в змінному полі твердих розчинів LixNa1−xNbO3 (LNN) як функцію температури (300 K–750 K) в низь- кочастотній області (100 Hz–20 kHz). Отримано комплексну картину залежності досліджених величин від хімічного складу. Отримані дані свідчать про наявність релаксаційних і транспортних процесів та про тепловий характер їх активації. Ключові слова: LixNa1−xNbO3, кераміки, діелектричні влатстивості PACS: 77.84.Dy, 77.22.-d 730