Approximate analytical dynamical mean-field approach to strongly correlated electron systems

An approximate analytical scheme of the dynamical mean-field theory (DMFT), that is used for electron systems with Hubbard correlations and is exact in the limit of the infinite dimensionality of a space, is developed. The effective single-site problem arising in the framework of this method is f...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2000
Автор: Stasyuk, I.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2000
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121033
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Approximate analytical dynamical mean-field approach to strongly correlated electron systems / I.V. Stasyuk // Condensed Matter Physics. — 2000. — Т. 3, № 2(22). — С. 437-456. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:An approximate analytical scheme of the dynamical mean-field theory (DMFT), that is used for electron systems with Hubbard correlations and is exact in the limit of the infinite dimensionality of a space, is developed. The effective single-site problem arising in the framework of this method is formulated in terms of the auxiliary Fermi-field. The irreducible Green's function technique with the projecting on the Hubbard basis of Fermi-operators is used for its solution. A system of DMFT equations is obtained in the approximation which is a generalization of the Hubbard-III approximation and combines it with a self-consistent renormalization of the local electron levels. It is shown that the proposed approach includes as simple specific cases a number of known approximations (Hubbard-III, AA, MAA, . . . ) based on the assumption of the single-site structure of the electron self- energy.