Three-particle correlation function in the electron-plasmon model

The method of calculating the n-particle electron correlation functions for the electron-plasmon model is demonstrated. We have proposed this model earlier for the description of the strongly non-ideal electron liquid. The three-particle dynamic correlation function is calculated and presented in...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Vavrukh, M.V., Slobodyan, S.B., Tyshko, N.L.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2005
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121046
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Three-particle correlation function in the electron-plasmon model / M.V. Vavrukh, S.B. Slobodyan, N.L. Tyshko // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 711–722. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-121046
record_format dspace
spelling irk-123456789-1210462017-06-14T03:04:01Z Three-particle correlation function in the electron-plasmon model Vavrukh, M.V. Slobodyan, S.B. Tyshko, N.L. The method of calculating the n-particle electron correlation functions for the electron-plasmon model is demonstrated. We have proposed this model earlier for the description of the strongly non-ideal electron liquid. The three-particle dynamic correlation function is calculated and presented in the elementary functions. The differences from the similar correlation function of the ordinary reference system approach in the electron liquid theory are investigated. Наведено спосіб розрахунку n-частинкових електронних кореляційних функцій електрон-плазмонної моделі, яка була запропонована авторами раніше для опису сильно неідеальної електронної рідини. Розраховано і представлено в елементарних функціях тричастинкову динамічну кореляційну функцію. Досліджено її відмінності від аналогічної кореляційної функції звичайного базисного підходу у теорії електронної рідини. 2005 Article Three-particle correlation function in the electron-plasmon model / M.V. Vavrukh, S.B. Slobodyan, N.L. Tyshko // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 711–722. — Бібліогр.: 16 назв. — англ. 1607-324X PACS: 05.30.Fk DOI:10.5488/CMP.8.4.711 http://dspace.nbuv.gov.ua/handle/123456789/121046 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The method of calculating the n-particle electron correlation functions for the electron-plasmon model is demonstrated. We have proposed this model earlier for the description of the strongly non-ideal electron liquid. The three-particle dynamic correlation function is calculated and presented in the elementary functions. The differences from the similar correlation function of the ordinary reference system approach in the electron liquid theory are investigated.
format Article
author Vavrukh, M.V.
Slobodyan, S.B.
Tyshko, N.L.
spellingShingle Vavrukh, M.V.
Slobodyan, S.B.
Tyshko, N.L.
Three-particle correlation function in the electron-plasmon model
Condensed Matter Physics
author_facet Vavrukh, M.V.
Slobodyan, S.B.
Tyshko, N.L.
author_sort Vavrukh, M.V.
title Three-particle correlation function in the electron-plasmon model
title_short Three-particle correlation function in the electron-plasmon model
title_full Three-particle correlation function in the electron-plasmon model
title_fullStr Three-particle correlation function in the electron-plasmon model
title_full_unstemmed Three-particle correlation function in the electron-plasmon model
title_sort three-particle correlation function in the electron-plasmon model
publisher Інститут фізики конденсованих систем НАН України
publishDate 2005
url http://dspace.nbuv.gov.ua/handle/123456789/121046
citation_txt Three-particle correlation function in the electron-plasmon model / M.V. Vavrukh, S.B. Slobodyan, N.L. Tyshko // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 711–722. — Бібліогр.: 16 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT vavrukhmv threeparticlecorrelationfunctionintheelectronplasmonmodel
AT slobodyansb threeparticlecorrelationfunctionintheelectronplasmonmodel
AT tyshkonl threeparticlecorrelationfunctionintheelectronplasmonmodel
first_indexed 2025-07-08T19:05:33Z
last_indexed 2025-07-08T19:05:33Z
_version_ 1837106769141170176
fulltext Condensed Matter Physics, 2005, Vol. 8, No. 4(44), pp. 711–722 Three-particle correlation function in the electron-plasmon model M.V.Vavrukh, S.B.Slobodyan, N.L.Tyshko The Ivan Franko National University of Lviv, Departament for Astrophysics, 8 Kyrylo and Methodii Str., 79005 Lviv, Ukraine Received August 3, 2005 The method of calculating the n-particle electron correlation functions for the electron-plasmon model is demonstrated. We have proposed this mod- el earlier for the description of the strongly non-ideal electron liquid. The three-particle dynamic correlation function is calculated and presented in the elementary functions. The differences from the similar correlation func- tion of the ordinary reference system approach in the electron liquid theory are investigated. Key words: electron liquid, plasmon oscillation, n-particle dynamic correlation functions, transition operator, collective variables PACS: 05.30.Fk 1. Introduction The practical calculations of the characteristics of degenerate electron systems are based on the perturbation theory over the power of the Coulomb potential which is connected with the local field conception. Since there is no rigorous microscopical theory of the local field correlation function, the development of alternative methods for description of the strongly non-ideal electrons systems remains one of the urgent tasks in statistical physics. It is well known that a very promissing direction in this field is a collective description of the interelectron interactions which presents the real situation, namely the existence of the collective motions. One of the earlier variants of such methods is described in the papers by Bohm and Pines [1–6]. This method uses a series of canonical transformations for the transition to the expanded space of the variables of electrons and plasmons. Consequently this approach bears an approximate character. Furthermore, at that time the problem of describing the strongly non-ideal systems was not considered to be urgent. Another variant of collective description was developed in the papers by Yukhnovskii et al. This is the method of displacements and collective variables (see [7–10]). In this variant of the collective description, as opposed to the approach by Bohm and Pines, the transition c© M.V.Vavrukh, S.B.Slobodyan, N.L.Tyshko 711 M.V.Vavrukh, S.B.Slobodyan, N.L.Tyshko to the expanded space is made rigorously by means of a transition function. The absence of the divergent diagrams is characteristic of both approaches as opposed to the standard methods of perturbation theory. The collective description has a deep physical basis as well as possesses some ad- vantages over the other methods, especially in the strong non-ideality region. Based on the example of the electron liquid model in paper [11] a new variant of collective description is proposed, which differs from the variants by Bohm-Pines and from the method of the displacement and collective variables. We start with the secondary quantization representation. Transition to the expanded space is made using the transition operator which was introduced in paper [12]. These collective variables are an intermediate element in our approach. They serve for the introduction of the operators of the creation and destruction of plasmons. Partition function of the model in the electron and plasmon terms does not have any approximations. Per- turbation theory relatively to the electron-plasmon interaction is built in terms of the n-particle dynamic correlation functions. Short-range interelectron interactions are taken into account in the local-field approximation [11]. 2. Correlation functions of the electron-plasmon model Due to the absence of the divergent diagrams the calculation of thermodynamic functions within the framework of the electron-plasmon model in the intermediate and strong non-ideality region is reduced to the calculation of only low order dia- grams of the perturbation theory over the power of the operator of electron-plasmon interaction [11]. In these diagrams, the dynamic electron correlation functions, the so-called connected averages, are found, as in the following formulae: ηn(x1, . . . , xn) = ( ~2 2m )nε−n F β−1 〈 T { f̂x1 f̂x2 · · · f̂xn }〉c 0 , (1) where εF = ~ 2k2 F/2m is Fermi energy, f̂x = ∑ k,s ∑ ν∗ (kq)a+ k+q,s(ν ∗ + ν)ak,s(ν ∗), (2) ν∗ n = (2n + 1)πβ−1, νn = 2πnβ−1 are Matsubara frequencies, β = (kBT )−1, x ≡ (q, ν), s is spin variable. Here, ak,s(ν ∗) is superposition of the secondary quantization operators on the plane wave base in the interaction representation [11,13] ak,s(ν ∗) = β− 1 2 β ∫ 0 ak,s(β ′ ) exp(iν∗β ′ )dβ ′ . (3) Similar functions also appear in other approaches with renormalization of interac- tions (see [14]). The calculations of the functions of this type are not known in the literature. We shall show that functions ηn(x1, . . . , xn) can eventually lead to 712 Correlation function in the electron-plasmon model correlation functions which are constructed on the operator density of the particles ρ̂x = ∑ k,s ∑ ν∗ a+ k+q,s(ν ∗ + ν)ak,s(ν ∗), namely µ0 n(x1, . . . , xn) = β−1 〈T {ρ̂x1 ρ̂x2 . . . ρ̂xn }〉c 0 , (4) which at n > 3 was originally calculated in papers [14,15]. As it is shown in papers [13,14] − 〈 T { ak1,s1 (ν∗ 1), a + k2,s2 (ν∗ 2) }〉 0 = Ge k1,s1 (ν∗ 1)δk1,k2 δs1,s2 δν∗ 1 ,ν∗ 2 , (5) where Ge k1,s1 (ν∗ 1) = {iν∗ − εk + µ}−1 is spectral representation of the one-particle Green’s function of the reference system. Relationship (5) makes it possible to present functions ηn(x1, . . . , xn) in the form of such convolutions: η2(x1, x2) = β−1δx1+x2,0( ~2 2mεF )2Re ∑ k,s ∑ ν∗ Ge k,s(ν ∗)Ge k+q1,s(ν ∗ + ν1) × (k,q1)(k + q1,q1); (6) η3(x1, x2, x3) = −2β−1δx1+x2+x3,0( ~2 2mεF )3Re ∑ k,s ∑ ν∗ Ge k,s(ν ∗) × Ge k+q1,s(ν ∗ + ν1)G e k−q2,s(ν ∗ − ν2) × (k,q1)(k + q1,q1 + q2)(k − q2,q2); . . . , where symbol Re is applied to Bose-Matsubara frequencies (ν1, ν2, . . .). Functions ηn(x1, . . . , xn) are real functions of their arguments (q1, . . . ,qn; ν1, . . . , νn). Let us do the sums over the frequency ν∗ using the rule [13] β−1 ∑ ν∗ Ge k,s(ν ∗) = nk,s = {1 + exp [β(εk − µ∗)]}−1 (7) represented by ηn(x1, . . . , xn) in the form of the sum over the wave vector η2(x,−x) = 2( ~2 2mεF )2Re ∑ k,s nk,sy(x)(k,q)(k + q,q); η3(x1, x2, x3) = −2δx1+x2+x3,0( ~2 2mεF )3Re ∑ k,s nk,s × {y(x1)y(−x2)(k,q1)(k − q2,q2)(k + q1,q1 + q2) + y(x2)y(−x3)(k,q2)(k − q3,q3)(k + q2,q2 + q3) + y(x3)y(−x1)(k,q3)(k − q1,q1)(k + q3,q3 + q1) } ; . . . , (8) where y(x) ≡ {iν + εk − εk+q}−1. It should be noticed, that the expression in the brackets (8) is symmetrical. The second and the third terms are obtained from the 713 M.V.Vavrukh, S.B.Slobodyan, N.L.Tyshko first one by means of cyclic transposition. Function η2(x,−x) is easily calculated. Transiting from the sum over the vector k to the integral and using spherical coor- dinate system (axis 0z is parallel to vector q), at the absolute zero temperature we can obtain η2(x,−x) = − N 2εF q2 + ( u2 + 1 4 q2 ) µ0 2(x,−x) = − N 2εF q2 { 1 − 3 [ u2 + 1 4 q2 ] I2,0(q, u) } , (9) where q ≡ |q|k−1 F ; u ≡ ν(2εFq)−1, I2,0(q, u) is the dimensionless function of these variables I2,0(q, u) = 1 2 { 1 + 1 2q ( 1 + u2 − q2 4 ) ∑ σ=±1 σ ln [ ( 1 + σ q 2 )2 + u2 ] − u ∑ σ=±1 arctan [ 1 u ( 1 + σ q 2 ) ] } . (10) 0 1 2 3 4 5 6 7 8 q/kF -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 µ2(q,u) η2(q,u) u = 0 0.5 1 u = 0 1 0.5 Figure 1. Two-particle correlation functions η2(q, u) = 2εF(3N)−1η2(x,−x) and µ2(q, u) = 2εF(3N)−1µ0 2(x,−x) at different values of the dimensionless frequency (u = 0; 0.5; 1). Functions ηn(x1, . . . , xn) differ from µ0 n(x1, . . . , xn) due to the presence of the product of scalar factors (k,qi). But this “trifle” strongly complicates the calculation of the functions ηn(x1, . . . , xn) (at the n > 3) and forms the fundamental difference in the dependence of the function (1) and (4) from wave vectors q1, . . . ,qn, namely their asymptotes |µ0 n(x1, . . . , xn)| → { NεF(εq1 . . . εqn )−1 at qi � kF; Nε1−n F at qi � kF; νi = 0; |ηn(x1, . . . , xn)| → { Nε1−n F at qi � kF; Nε1−n F q1q2 . . . qnk −n F at qi � kF; νi = 0. (11) This asymptote is confirmed in figure 1 where dimensionless factors of the functions η2(x,−x) and µ2(x,−x) as functions of wave vector q at the given frequencies are 714 Correlation function in the electron-plasmon model shown. Function η2(x,−x) is also an oscillating function in the region of the low and medium vectors, as opposed to µ0 2(x,−x). The calculation method of the correlation functions at the n > 3 is illustrated based on the example of three-particle function. At first, in each of the three terms of the formula (8) transformation is made to decrease the number of the scalar products by applying the identity type ~2 2m (k,q1) = −1 2 {εk + εq1 − εk+q1 } , ~2 2m (k − q2,q2) = −1 2 {εk−q2 − εk + εq2 } . (12) Due to the transformations from each of the terms in formula (8) there arise compo- nents without energy denominators and components with one energy denominator type: µ2(x) = −2 ∑ k,s nk,s[iν + εk − εk+q] −1, ζ2(x1|q2) = −4 ∑ k,s nk,s ~2 2m (k,q2)[iν1 + εk − εk+q1 ]−1 (13) and components with two energy denominators but without the scalar products in the numerator of the fraction type Γ3(x1;−x2) = ∑ k,s nk,s[iν1 + εk − εk+q1 ]−1[−iν2 + εk − εk−q2 ]−1. (14) Calculation of the components of the type (13) is easily done by integrating over the vector k in the spherical coordinate system. In the dimensionless variables µ2(x) = 3N 2εF R2,0(q, u), ζ2(x|q1) = 3N q2 (q,q1)C(q, u), (15) where dimensionless complex functions R2,0(q, u) and C(q, u) are shown in the Ap- pendix. Introducing the notation ε(q, u) = q2 + 2iuq we present η3(x1, x2, x3) in the dimensionless variables as follows: η3 (x1, x2, x3) = 3N (2εF)2 δq1+q2+q3,0δν1+ν2+ν3,0 { −1 3 ( q2 1 + q2 2 + q2 3 ) + 1 2 I2,0 (q1, u1) Re [ε∗ (q1, u1) (ε∗ (q2, u2) + ε∗ (q3, u3))] + 1 2 I2,0 (q2, u2) Re [ε∗ (q2, u2) (ε∗ (q3, u3) + ε∗ (q1, u1))] + 1 2 I2,0 (q3, u3) Re [ε∗ (q3, u3) (ε∗ (q1, u1) + ε∗ (q2, u2))] 715 M.V.Vavrukh, S.B.Slobodyan, N.L.Tyshko − Re 4 [R2,0 (q1, u1) (ε (q1, u1) ε (q3, u3) + ε∗ (q1, u1) ε (q2, u2))] − Re 4 [R2,0 (q2, u2) (ε (q2, u2) ε (q1, u1) + ε∗ (q2, u2) ε (q3, u3))] − Re 4 [R2,0 (q3, u3) (ε (q3, u3) ε (q2, u2) + ε∗ (q3, u3) ε (q1, u1))] − (q1,q2) 2 Re [ ε∗ (q1, u1) C (q1, u1) q−2 1 + ε∗ (q2, u2) C∗ (q2, u2) q−2 2 ] − (q2,q3) 2 Re [ ε∗ (q2, u2) c (q2, u2) q−2 2 + ε∗ (q3, u3) c∗ (q3, u3) q−2 3 ] − (q1,q3) 2 Re [ ε∗ (q3, u3) C (q3, u3) q−2 3 + ε∗ (q1, u1) C∗ (q1, u1) q−2 1 ] } − 1 4 δq1+q2+q3,0δν1+ν2+ν3,0Re { ε∗ (q1, u1) ε∗ (q2, u2) ε∗ (q3, u3) × [Γ3 (x1;−x2) + Γ3 (x2;−x3) + Γ3 (x3;−x1)] } . (16) The last term in formula (16) is connected with the function µ0 3(x1, x2, x3), since µ0 3(x1, x2, x3) = −2δq1+q2+q3,0δν1+ν2+ν3,0Re {Γ3(x1;−x2) +Γ3(x2;−x3) + Γ3(x3;−x1)} . (17) The difficulty in calculating Γ3(xi;−xj) as well as the functions of higher order (together with a greater number of energy denominators) is caused by the necessity to integrate over the vector k at the given configuration of the vectors q1, . . . ,qn. However, the integration over the angled variables of the vector k is easily done if one uses Feynman identity [16], n ∏ j=1 A−1 j = (n − 1)! 1 ∫ 0 · · · 1 ∫ 0 dα1 . . . dαn { n ∑ j=1 αjAj }−n δ ( n ∑ j=1 αj − 1 ) . (18) Let us consider the calculation function Γ3(x1; x2) for the case of frequencies ν1 and ν2 of the same sign, since real part ∑ j αjAj can be equal to zero at some values α. Then, there appears a condition of positive distinctness of the imaginary part ∑ j αjAj. The formulae which permit to obtain the function Γ3(x1; x2) for frequencies of different sign are given in the Appendix. In formula (14) we transit to dimensionless variables qi = |qi|k−1 F , ui = νi(2εFqi) −1 and use the identity (18) at n = 2. Thus, we obtain the following representation Γ3(x1; x2) = 3N 4πq1q2(2εF)2 ∫ dk nk,s 1 ∫ 0 dαF−2 α ; (19) Fα = α[(k, e1) + ξ1] + (1 − α)[(k, e2) + ξ2], 716 Correlation function in the electron-plasmon model where ei = qi|qi|−1, vector k measured pin the units of kF, ξj = 1 2 qj − iuj; j = 1, 2. Let us introduce vector ρα = αe1 + (1 − α)e2 , (20) and mark Ωα = α(ξ2 − ξ1) − ξ2 = Ωc α − iΩs α ; Ωc α = 1 2 [α(q1 − q2) + q2], Ωs α = α(u1 − u2) + u2 , (21) so that Ωc α, Ωs α > 0. In these notations Fα = (k,ρα) + Ωα, (22) therefore integration over the angled variables of the vector k is done in the spherical coordinate system (axis 0z parallel to vector ρα). After integrating over the module of the vector k we obtain Γ3(x1; x2) in the form of single integral over the parameter α Γ3(x1; x2) = − 3N q1q2(2εF)2 1 ∫ 0 dα ρ2 α { 1 − Ωα 2ρα ln ∣ ∣ ∣ ρα + Ωα ρα − Ωα ∣ ∣ ∣ } , ρα ≡ |ρα| = { 1 − 2α(1 − t) + 2α2(1 − t) } 1 2 , (23) t ≡ t12 ≡ (e1, e2) is cosine of the angle between vectors q1 and q2. The integral over the variable α is divided into two ones. The integral in which we have logarithm is integrated by parts. Then we unite it with the integral in which the subintegral function is equal to ρ−2 α . Thus, the integral (23) is considerably simplified Γ3(x1; x2) = 3N (2εF)2 [ 2q1q2(1 − t2) ]−1 × { [ξ2 − tξ1] ln [ 1 − ξ1 1 + ξ1 ] + [ξ1 − tξ2] ln [ 1 − ξ2 1 + ξ2 ]} − 3N (2εF)2 [ 2q1q2 ( 1 − t2 )]−1 δ(ξ, t) 1 ∫ 0 dα ρ2 α − Ω2 α , (24) where δ(ξ, t) = 1 − t2 − ξ2 1 − ξ2 2 + 2tξ1ξ2; ρ2 α − Ω2 α = α2 { 2(1 − t) − (ξ1 − ξ2) 2 } + 2α {ξ2(ξ2 − ξ1) − (1 − t)} + 1 − ξ2 2 . (25) Let α1 = αc 1 + iαs 1, α2 = αc 2 + iαs 2 are roots of the equation ρ2 α − Ω2 α = 0: αc 1 = { p2 c + p2 s }−1 {pc(bc − η) + ps(bs + ζ)} ; αs 1 = { p2 c + p2 s }−1 {pc(bs + ζ) − ps(bc − η)} ; αc 2 = { p2 c + p2 s }−1 {pc(bc + η) + ps(bs − ζ)} ; αs 2 = { p2 c + p2 s }−1 {pc(bs − ζ) − ps(bc + η)} . (26) 717 M.V.Vavrukh, S.B.Slobodyan, N.L.Tyshko Here the following notations are used pc = 2(1 − t) − 1 4 (q1 − q2) 2 + (u1 − u2) 2; ps = (q1 − q2)(u1 − u2); bc = 1 − t − u2(u1 − u2) + q2 4 (q1 − q2); bs = u2 2 (q2 − q1) − q2 2 (u1 − u2); [δ(ξ, t)] 1 2 = ζ + iη; ζ = 1√ 2 { δc + [ δ2 c + δ2 s ] 1 2 } 1 2 ; η = δs√ 2 { δc + [ δ2 c + δ2 s ] 1 2 }− 1 2 ; δc = 1 − t2 − 1 4 (q2 1 + q2 2 − 2tq1q2) + (u2 1 + u2 2 − 2tu1u2); δs = u1(q1 − tq2) + u2(q2 − tq1). (27) Let us divide the subintegral function into simple factors and present the integral over the variable α in the following form: δ (ξ, t) 1 ∫ 0 dα ρ2 α − Ω2 α = γc 3 + iγs 3 , γc 3 = ζ 2 ( Ã1 − Ã2 ) + η 4 ( L̃1 − L̃2 ) ; γs 3 = η 2 ( Ã1 − Ã2 ) − ζ 4 ( L̃1 − L̃2 ) ; Ãi = arctan 1 − αc i αs i + arctan αc i αs i ; L̃i ≡ ln (1 − αc i) 2 + (αs i ) 2 (αc i) 2 + (αs i ) 2 ; (i = 1, 2) . (28) Thus, the real and the imaginary components of the function Γ3(x1; x2) are deter- mined in the following expressions: Γc 3(x1; x2) = 3N (2εF)2 [ 2q1q2 ( 1 − t2 )]−1 { −1 4 (q2 − tq1)L(q1, u1) − (u2 − tu1) ×A(q1, u1) − 1 4 (q1 − tq2)L(q2, u2) − (u1 − tu2)A(q2, u2) − γc 3 } ; Γs 3(x1; x2) = − 3N (2εF)2 [ 2q1q2 ( 1 − t2 )]−1 1 2 {(q2 − tq1) A(q1, u1) − (u2 − tu1) × L(q1, u1) + (q1 − tq2) A(q2, u2) − (u1 − tu2) L(q2, u2) + γs 3} , (29) where functions A(q, u) and L(q, u) are shown in the Appendix. Expressions (15), (16), (26)–(29) together with the formulae from the Appendix determine the function η3(x1, x2, x3). 3. Conclusions The proposed method for calculating the three-particle dynamic correlation func- tion permits to calculate the degenerate function of the fourth order η4(x1,−x1, x2,−x2) 718 Correlation function in the electron-plasmon model in the analytical form. Function η4(x1, x2, x3,−x1 − x2 − x3) and function η5(x,−x, x1, x2,−x1 − x2) can be presented in the form of single integral over the parameter α from elementary functions. Due to a good fit of the series of the per- turbation theory there is no need in calculating the functions ηn(x1, . . . , xn) of the higher order. 0.5 1 1.5 2 2.5 3 3.5 4 q10 0.5 1 1.5 2 2.5 3 3.5 4 q2 -1 -0.5 0 0.5 1 0.5 1 1.5 2 2.5 3 3.5 4 q10 0.5 1 1.5 2 2.5 3 3.5 4 q2 -1.5 -1 -0.5 0 0.5 1 1.5 (a) (b) Figure 2. Functions η3(x1, x2, x3) (figure 2a) and µ0 3(x1, x2, x3) (figure 2b) at the ν̄1 = ν̄2 = 0, 1; t12 = −1 (ν̄ = ν(2εF)−1). 0 0.5 1 1.5 2 2.5 3 3.5 4 q1 0 0.5 1 1.5 2 2.5 3 3.5 4 q2 -2.5 -2 -1.5 -1 -0.5 0 0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 q1 0 0.5 1 1.5 2 2.5 3 3.5 4 q2 0 0.5 1 1.5 2 (a) (b) Figure 3. Functions η3(x1, x2, x3) (figure 3a) and µ0 3(x1, x2, x3) (figure 3b) at the ν̄1 = ν̄2 = 0, 1; t12 = 0. Figure 1 and figures 2–6 clearly show that the function η3(x1, x2, x3) differs from the correlation function of the ordinary reference system approach µ0 3(x1, x2, x3). In the region of the small wave numbers the η3(x1, x2, x3) have much smaller values (in absolute value) than µ0 3(x1, x2, x3). As a rule, η3(x1, x2, x3) is the oscillating function (even in those cases when µ0 3(x1, x2, x3) have constant signs (see figures 3– 5)). Similarly to µ0 3(x1, x2, x3), the functions η3(x1, x2, x3) have a strong frequency dependence. At the frequencies ν1 = ν2, the functions µ0 3(x1, x2, x3) are the surfaces that are symmetrical relatively to the trussed q1 = q2 at any values of cos(q1,q2) (figures 2b, 3b, 4b). At ν1 6= ν2 the functions µ0 3(x1, x2, x3) are asymmetrical. 719 M.V.Vavrukh, S.B.Slobodyan, N.L.Tyshko 0 0.5 1 1.5 2 2.5 3 3.5 4 q1 0 0.5 1 1.5 2 2.5 3 3.5 4 q2 -1 -0.5 0 0.5 1 0 0.5 1 1.5 2 2.5 3 3.5 4 q1 0 0.5 1 1.5 2 2.5 3 3.5 4 q2 0 0.5 1 1.5 (a) (b) Figure 4. Functions η3(x1, x2, x3) (figure 4a) and µ0 3(x1, x2, x3) (figure 4b) at the ν̄1 = ν̄2 = 0, 1; t12 = 1. -2.5 -2 -1.5 -1 -0.5 0 0.5 0 1 2 3 4 5 q1 q2=0.1 q2=0.5 q2=1.0 q2=2.0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 1 2 3 4 5 q1 q2=0.1 q2=0.5 q2=1.0 q2=2.0 (a) (b) Figure 5. Functions η3(x1, x2, x3) (figure 5a) and µ0 3(x1, x2, x3) (figure 5b) at the constant waves numbers q2 for the case where ν̄1 = ν̄2 = 0, 1; t12 = 0 (q2 = 0, 1; 0, 5; 1; 2). 0 0.5 1 1.5 2 2.5 3 3.5 q1 0 0.5 1 1.5 2 2.5 3 3.5 q2 -2 -1.5 -1 -0.5 0 0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 q1 0 0.5 1 1.5 2 2.5 3 3.5 4 q2 -1 -0.5 0 0.5 1 1.5 (a) (b) Figure 6. Function η3(x1, x2, x3) for the case of unequal frequencies (ν̄1 = 0, 1; ν̄2 = 0, 3) at the t12 = 0. 720 Correlation function in the electron-plasmon model The functions η3(x1, x2, x3) have a strong dependence on cos(q1,q2) and are asym- metrical even at the ν1 = ν2. This is illustrated in figures 2a, 3a, 4a. From figures 2–7, it arises that the asymptotes of the functions µ0 3(x1, x2, x3) and η3(x1, x2, x3) corre- spond to the formula (11). Appendix Here we introduce the explicit expressions for the functions (13) in the dimensi- onless variables q = |q|k−1 F , u = ν(2εFq)−1: µ2(x) = 3N 2εF R2,0(q, u), R2,0(q, u) = I2,0(q, u) + iJ2,0(q, u), where I2,0(q, u) is determined by formula (10), J2,0 (q, u) = − 1 2q { u− 1 2 ( 1+u2− q2 2 ) A (q, u) } ; ζ2 (x|q1) = 3N q2 (q,q1) C (q, u) , C (q, u) = Cc (q, u) + iCs (q, u) , Cc (q, u) = 2 3 + ( u2− q2 4 ) − q 8 ( 1+3u2 − q2 4 ) L (q, u)−u 2 ( 1 + u2 − 3 4 q2 ) A (q, u) ; Cs (q, u) = qu + u 4 ( 1 + u2 − 3 4 q2 ) L (q, u) − 1 4 q ( 1 + 3u2 − q2 4 ) A (q, u) . Above we use the following marks: L (q, u) = ln u2 + ( 1 + q 2 )2 u2 + ( 1 − q 2 )2 ; A (q, u) = arctan 1 + q 2 u + arctan 1 − q 2 u . Proceeding from the definition (14) and the explicit expression Γ3(x1; x2) ≡ Γ3(q1, ν1;q2, ν2) at the ν1, ν2 > 0 or ν1, ν2 < 0 by way of elementary transforma- tions we can obtain such relationships which permit to write Γ3(q1, ν1;q2, ν2) for positive and negative wave vectors and frequencies. Let Γ3(x1; x2) for the case of the frequencies of the same sign ν1, ν2 be written in the dimensionless form: Γ3 (x1; x2) ≡ 3N (2εF)2 γ3 ( q1, q2, t ∣ ∣ ∣ ∣ ν̄1 q1 , ν̄2 q2 ) where t ≡ t12 = cos(q̂1,q2), ν̄i ≡ ν(2εF)−1. Then Γ3 (q1, ν1;−q2, ν2) = 3N (2εF)2 γ3 ( q1, q2,−t ∣ ∣ ∣ ∣ ν̄1 q1 , ν̄2 q2 ) , (ν1, ν2 > 0) , Γ3 (q1, ν1;−q2,−ν2) = 3N (2εF)2 γ3 ( q1,−q2, t ∣ ∣ ∣ ∣ ν̄1 q1 , ν̄2 q2 ) , (ν1, ν2 > 0) , Γ3 (q1, ν1;q2,−ν2) = 3N (2εF)2 γ3 ( q1,−q2,−t ∣ ∣ ∣ ∣ ν̄1 q1 , ν̄2 q2 ) , (ν1, ν2 > 0) . 721 M.V.Vavrukh, S.B.Slobodyan, N.L.Tyshko References 1. Bohm D., Pines D., Phys. Rev., 1951, 82, No. 4, 625–634. 2. Bohm D., Pines D., Phys. Rev., 1952, 85, No. 2, 338–353. 3. Bohm D., Pines D., Phys. Rev., 1953, 92, No. 3, 609–625. 4. Pines D., Phys. Rev., 1953, 92, No. 3, 626–636. 5. Bohm D., Huang K., Pines D., Phys. Rev., 1957, 107, No. 1, 71–80. 6. Nozieres P., Pines D., Phys. Rev., 1958, 111, No. 2, 442–454. 7. Yukhnovskii I.R., Ukr. Fiz. Zhurn., 1964, 9, No. 7, 702–714 (in Russian). 8. Yukhnovskii I.R., Ukr. Fiz. Zhurn., 1964, 9, No. 8, 827–838 (in Russian). 9. Yukhnovskii I.R., Tsiganenko V.V., Vavrukh M.V, Ukr. Fiz. Zhurn., 1965, 10, No. 2, 135–146 (in Russian). 10. Yukhnovskii I.R., Petrashko R.N., Teor. Mat. Fiz., 1973, 17, No. 1, 118–130 (in Russian). 11. Vavrukh M.V., Slobodyan S.B., Conden. Matt. Phys., 2005, 8, No. 3, 453. 12. Vavrukh M.V., Visnik Lviv. Univer. seriya fizichna, 1968, No. 3, 26–33 (in Ukrainian). 13. Vavrukh M.V., Slobodyan S.B., Journ. Phys. Stud., 2003, 7, No. 3, 275–282 (in Ukrainian). 14. Vavrukh M., Tyshko N., Koval’ S., Kushtay Ya., Journ. Phys. Stud., 2003, 7, No. 4, 375–387 (in Ukrainian). 15. Vavrukh M., Krokhmalskii T., Phys. Stat. Sol. (b), 1991, 168, 519–532. 16. Hwa R.C., Teplitz V.L. Homology and Feynman integrals. W.A. Benjamin, New– York/Amsterdam, 1966. Тричастинкова кореляційна функція в електрон-плазмонній моделі М.В.Ваврух, С.Б.Слободян, Н.Л.Тишко Львівський національний університет імені Івана Франка, кафедра астрофізики, 79005 Львів, вул. Кирила і Мефодія, 8 Отримано 3 серпня 2005 р. Наведено спосіб розрахунку n-частинкових електронних кореляцій- них функцій електрон-плазмонної моделі, яка була запропонована авторами раніше для опису сильно неідеальної електронної рідини. Розраховано і представлено в елементарних функціях тричастинко- ву динамічну кореляційну функцію. Досліджено її відмінності від ана- логічної кореляційної функції звичайного базисного підходу у теорії електронної рідини. Ключові слова: електронна рідина, плазмові коливання, n-частинкові динамічні кореляційні функції, оператор переходу, колективні змінні PACS: 05.30.Fk 722