Excitation spectrum and electrical properties of the condensate of Bose atoms

It is shown that the condensate of a degenerated Bose gas consisting of neutral atoms possesses electrical properties which differ from a trivial polarization of the atoms in the electric field. A notion of an isotropic quadrupole moment (IQM) of a neutral atom is introduced. A distribution of I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2005
1. Verfasser: Kosevich, A.M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2005
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/121051
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Excitation spectrum and electrical properties of the condensate of Bose atoms / A.M. Kosevich // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 773–778. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-121051
record_format dspace
spelling irk-123456789-1210512017-06-14T03:04:43Z Excitation spectrum and electrical properties of the condensate of Bose atoms Kosevich, A.M. It is shown that the condensate of a degenerated Bose gas consisting of neutral atoms possesses electrical properties which differ from a trivial polarization of the atoms in the electric field. A notion of an isotropic quadrupole moment (IQM) of a neutral atom is introduced. A distribution of IQM reflects a specific spatial ordering in the condensate and produces a distribution of the electric potential. Small vibrations of the Bose gas are considered and a correction to the Bogoliubov spectrum of elementary excitations in the degenerated Bose gas is obtained. An additional term in the Gross-Pitaevskii equation which is responsible for such a correction is found and a new type of the nonlinear Schrodinger equation (NSE) is constructed. Since the Bose condensate is akin to the superfluid component in He II, a manifestation of its electrical activity could have a relation to the electrical activity of the superfluid liquid observed experimentally. Показано, що конденсат виродженого Бозе-газу нейтральних атомів володіє електричними властивостями, які відрізняються від тривіальної поляризації атомів у електричному полі. Вводиться поняття ізотропного квадрупольного моменту (ІКМ) нейтрального атома. Розподіл ІКМ відображає особливе просторове впорядкування в конденсаті і генерує розподіл електричного потенціалу. Розглядаються малі коливання Бозе-газу і отримується поправка до Боголюбівського спектру елементарних збуджень у виродженому Бозе-газі. Знайдено додатковий член у рівнянні Гроса-Пітаєвского, який відповідає за таку поправку та побудовано новий тип нелінійного рівняння Шредіннера. Оскільки Бозе-конденсат є споріднений з надплинною компонентою в He II, то прояв його електричної поведінки може мати відношення до експериментально спостережуваної електричної поведінки надплинної рідини 2005 Article Excitation spectrum and electrical properties of the condensate of Bose atoms / A.M. Kosevich // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 773–778. — Бібліогр.: 6 назв. — англ. 1607-324X PACS: 47.27.Eq, 67.40.Db DOI:10.5488/CMP.8.4.773 http://dspace.nbuv.gov.ua/handle/123456789/121051 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description It is shown that the condensate of a degenerated Bose gas consisting of neutral atoms possesses electrical properties which differ from a trivial polarization of the atoms in the electric field. A notion of an isotropic quadrupole moment (IQM) of a neutral atom is introduced. A distribution of IQM reflects a specific spatial ordering in the condensate and produces a distribution of the electric potential. Small vibrations of the Bose gas are considered and a correction to the Bogoliubov spectrum of elementary excitations in the degenerated Bose gas is obtained. An additional term in the Gross-Pitaevskii equation which is responsible for such a correction is found and a new type of the nonlinear Schrodinger equation (NSE) is constructed. Since the Bose condensate is akin to the superfluid component in He II, a manifestation of its electrical activity could have a relation to the electrical activity of the superfluid liquid observed experimentally.
format Article
author Kosevich, A.M.
spellingShingle Kosevich, A.M.
Excitation spectrum and electrical properties of the condensate of Bose atoms
Condensed Matter Physics
author_facet Kosevich, A.M.
author_sort Kosevich, A.M.
title Excitation spectrum and electrical properties of the condensate of Bose atoms
title_short Excitation spectrum and electrical properties of the condensate of Bose atoms
title_full Excitation spectrum and electrical properties of the condensate of Bose atoms
title_fullStr Excitation spectrum and electrical properties of the condensate of Bose atoms
title_full_unstemmed Excitation spectrum and electrical properties of the condensate of Bose atoms
title_sort excitation spectrum and electrical properties of the condensate of bose atoms
publisher Інститут фізики конденсованих систем НАН України
publishDate 2005
url http://dspace.nbuv.gov.ua/handle/123456789/121051
citation_txt Excitation spectrum and electrical properties of the condensate of Bose atoms / A.M. Kosevich // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 773–778. — Бібліогр.: 6 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT kosevicham excitationspectrumandelectricalpropertiesofthecondensateofboseatoms
first_indexed 2025-07-08T19:06:28Z
last_indexed 2025-07-08T19:06:28Z
_version_ 1837106824124301312
fulltext Condensed Matter Physics, 2005, Vol. 8, No. 4(44), pp. 773–778 Excitation spectrum and electrical properties of the condensate of Bose atoms A.M.Kosevich B.Verkin Institute for Low Temperature Physics and Engineering of National Academy of Sciences of Ukraine, 47, Lenin Avenue, Kharkiv, 61103 Ukraine Received July 15, 2005, in final form October 24, 2005 It is shown that the condensate of a degenerated Bose gas consisting of neutral atoms possesses electrical properties which differ from a triv- ial polarization of the atoms in the electric field. A notion of an isotropic quadrupole moment (IQM) of a neutral atom is introduced. A distribution of IQM reflects a specific spatial ordering in the condensate and produces a distribution of the electric potential. Small vibrations of the Bose gas are considered and a correction to the Bogoliubov spectrum of elementary ex- citations in the degenerated Bose gas is obtained. An additional term in the Gross-Pitaevskii equation which is responsible for such a correction is found and a new type of the nonlinear Schrödinger equation (NSE) is con- structed. Since the Bose condensate is akin to the superfluid component in He II, a manifestation of its electrical activity could have a relation to the electrical activity of the superfluid liquid observed experimentally. Key words: Bose condensate, Bogoliubov spectrum, electrical polarization of He II PACS: 47.27.Eq, 67.40.Db 1. Electrical activity of neutral atoms The neutral He atom in the 1S0 ground state does not have an intrinsic ( in the absence of electrical field ) dipole moment but it does have an important microscopic electrical characteristic [1] – an isotropic quadrupole moment (IQM). The IQM is defined by the following formula qik = ∑ exixk, i, k = 1, 2, 3, where the summation is over all electric charges in the system. In the case of the He4 we have qik = q0δik and q0 = (1/3)qll = −2|e|a2 (e is the charge of the electron and a is the Bohr radius). From the standpoint of macroscopic physics this is a c© A.M.Kosevich 773 A.M.Kosevich “latent” atomic characteristic, since in macroscopic interactions of electrical systems the quantity qik − (1/3)q0δik goes to zero in the given case. The IQM produces an electric potential inside the atom. To calculate the poten- tial we use the simplest classical model of an atom, supposing all the electrons distri- buted homogeneously over the surface of a sphere with radius a. If the total charge of the atomic nucleus is Z|e|, the electrostatic potential averaged by volume inside such a sphere-atom having the volume V0 = 4πa3/3 is equal to ϕ0 = 3Z|e|/((2a). According to the model proposed, the atomic IQM is equal to q0 = −Z|e|a2. Since the potential is concentrated inside the atoms, its spatial localized distri- bution in a gas may be described in the long wave approximation by means of the expression ϕ(x) = ϕ0V0 ∑ α δ(x − xα) = −2πq0 ∑ α δ(x − xα), (1) where xα is a coordinate of α-atom and the summation is extended over all the atoms in the system. The long wave formula (1) was derived strongly in the paper [2]. Let us introduce a microscopic density of atoms n(x) = ∑ α δ(x − xα). (2) As a result, we obtain a connection of the electric potential of a neutral gas ϕ(x) with the density of the atomic IQMs Q: ϕ(x) = −2πQ, Q = q0n(x). (3) Equations (2), (3) make it possible to calculate the mean electric potential in the condensate. Consider the Bose condensate either in the ground state or in a slightly excited state. The atoms in the coherent condensate state form some ordered structure with the wave function Ψ(xα) = Ψ(x1,x2,x3, . . .). (4) In order to describe the slightly excited states of a nearly ideal Bose gas we suggest to use the approximation of a mean field type. Suppose all the atoms are found in the same single-particle quantum state ψ0(xα): Ψ(xα) = ∏ α ψ0(xα). (5) Then the mean density of the gas has got a very simple form 〈n(x)〉 = ∑ α 〈Ψ|δ(x − xα)|Ψ〉 = ∑ α ∫ |Ψ|2δ(x − xα) ∏ β dVβ = ∑ α |ψ0(x)|2 = N0|ψ0(x)|2, where N0 is the number of atoms in the condensate. Of course the function ψ0(x) is normalized to unity. 774 Excitation spectrum of the condensate of Bose atoms The problem of describing the electrical properties of the condensate comes to a problem of searching the function ψ0(x). However in the mean field approximation, the function ψ0(x) can be taken in the form of a solution of the Gross-Pitaevskii equation [3]: ih̄ ∂ψ0 ∂t = − h̄2 2m ∆ψ0 + U0 ( |ψ0|2 − n0 ) ψ0 , (6) where n0 = N0/V is the equilibrium density of the condensate, and a solution of equation (6) should be normalized to the number of atoms N0. Slightly excited states of the condensate are equivalent to small vibrations and the wave function of such vibrations can be written as follows: ψ(x, t) = √ n 0 (1 + θ(x, t)) , |θ(x, t)| � 1 . (7) Linearization of equation (6) with respect to θ(x, t) leads to the following equation ih̄ ∂θ ∂t = − h̄2 2m ∆θ + U0n0(θ + θ∗). (8) Equation (8) comes to two partial differential equations with the time derivatives of the second order with respect to the sum θ + θ∗ and the difference θ− θ∗ . We take the solution θ + θ∗ = θ0 cos(kx − ωt), (9) where ω and k are the frequency and wave vector connected by means of the formula for Bogoliubov’s spectrum ω2 = k2   U0n0 m + ( h̄k 2m )2   . (10) Equation (9) makes it possible to calculate the small oscillations if the gas den- sity (6): δn = n0θ0 cos(kx − ωt). (11) The oscillations of the density produce oscillations of the electric potential (3) in the neutral Bose gas. This effect can have a relation to the oscillations of the electric potential produced by the vibrations of the second sound wave in a superfluid liquid observed by Rybalko [4]. Really, eigen solutions of equation (8) describe elementary excitations in the condensate and δn can be treated as a density of elementary excitations above the ground state. In the theory of superfluidity [3] the vibrations of the density of elementary excitations are associated with temperature oscillations. In its turn a nondissipative wave of the temperature oscillations is an analog of the second sound wave in the helium II. 2. Correction to Bogoliubov’s spectrum The electrical activity of the Bose condensate should be taken into consideration in solving the problem of its small vibrations. We restrict ourselves to the mean field approximation and long wave Gross-Pitaevskii equation. 775 A.M.Kosevich In the long wave approximation, the interaction of an atom in the point x1 with an external field ϕ(x) is as follows: δUint = 1 2 q∆ϕ(x1), (12) where q is the atomic IQM. If the field ϕ(x) is created by an atom in the point x2, we can use the expression (1) for the potential produced by the second atom. Then in the long wave approximation the energy of the pair interaction of the atoms under consideration can be written as U(x1 − x2) = −2πq2∆δ(x1 − x2). (13) The Fourier component of this interaction energy is equal to Uk = πq2k2. (14) However, equation (13) for the pair interaction energy does not include all pos- sible contact interactions of two atoms. In particular, it does not take into consid- eration two important facts. First of all, a finite size of the atomic radius a should be taken into account [5]. And secondly, a deformation of the electron distributions inside the atoms during their contact was excluded from the calculation of equati- on (12). These facts give an additional contribution to the Fourier component (14) and can change both the magnitude and the sign of Uk. Consequently, the total pair energy of the atomic interaction in the long wave approximation should be written as follows: Uk = U0 + U1(ak) 2 , (15) where the parameter U1 has an order of the magnitude of U0. A new form of the second term in equation (15) changes the interaction energy in the coordinate representation δU(x1 − x2) = −U1∆δ(x1 − x2). (16) The additional term in equation (15) which is proportional to k2 also leads to the change of Bogoliubov ’s spectrum. Now small vibrations of the condensate have the following frequencies squared (h̄ω)2 = ε2(p) + (h̄Ω(p))2 , (17) where ε(p) is given by equation (10) and the frequency Ω plays the role of an ion plasma frequency: Ω2(p) = U1n0 m ( p h̄ )4 ≡ U1n0 m k4. (18) Taking into account the electrical activity of the Bose condensate, one does not change the low frequency spectrum of the sound vibrations. We see only a slight renormalization of the mass of elementary excitations at high frequencies. 776 Excitation spectrum of the condensate of Bose atoms In its turn the expression (16) enables us to determine an additional term in the Gross-Pitaevskii equation associated with the electrical activity of the condensate. Considering (6) as an equation derived in the mean field approximation, we can include the term (16) averaged over the state ψ0 into the effective Hamiltonian. Since 〈Ψ0(x1)|δU(x − x1)|Ψ0(x1)〉 = −U1∆|Ψ0(x)|2, (19) we proposed [6] a little bit changed form of equation (6): ih̄ ∂Ψ0 ∂t = − h̄2 2m ∆Ψ0 + U0 ( |Ψ0|2 − n0 ) Ψ0 − U1Ψ0∆|Ψ0|2. (20) Thus, taking the electrical properties of the Bose condensate into account we come to a new type of the nonlinear Schröeding equation (NSE) describing the dynamics of the Bose condensate. 3. Remarks Return to equations (1)–(3): ϕ(x) = −2πq n(x), n(x) = ∑ α δ(x − xα). (21) This expression has a relation for any gas and for any condensed matter. Using statistical-thermodynamical averaging of equation (21) one can write 〈〈ϕ〉〉 = −2π〈〈q n〉〉. (22) In the case of a gas the parameter q is a characteristic of a single atom and does not depend on the states of other atoms of the gas: 〈〈q n〉〉 = q〈〈n〉〉. In the case of a condensed matter, a distribution of the electron charge in any atom depends on the neighbouring atoms and their states, and a calculation of the parameter q is a special problem of the quantum mechanics of many particles. As a result the mean electric potential (22) depends not only on the atom radius a but on the mean interatomic distance in the matter l as well. 777 A.M.Kosevich References 1. Kosevich A.M., On the description of electrical effects in the two-fluid model of super- fluidity. FNT, 2005, 31, No. 1, 50–54 (in Russian); Low Temp. Phys, 2005, 31, No. 1, 37–40. 2. Kosevich A.M., Dynamic electrostricshion of Bose-condensate and a system of neutral atoms. FNT, 2005, 31, No. 10, 1100–1102 (in Russian). 3. Lifshits E.M., Pitaevskii L.P. Statistical Physics, part 2. Nauka, Moscow, 1978, 620 p. (in Russian). 4. Rybalko A.S., Observation of electrical induction in a wave of the second sound in He II. FNT, 2004, 30, No. 11, 1321–1325 (in Russian); Low Temp. Phys, 2004, 30, No. 11, 994–998. 5. Brueckner K.A., Savada K., Bose-Einstein gas with repulsive interation: hard spheres at high density. Phys. Rev., 1957, 106, No. 6, 1128–1135. 6. Kosevich A.M., Electrical properties of a condensate of Bose-atoms. Ukr. Fiz. Zhurnal, 2005, 50, No. 8A, A130–A134 (in Russian). Спектр збуджень та електричні властивості конденсату Бозе-атомiв А.М.Косевіч Фiзико-технiчний iнститут низьких температур iм.Б.Веркiна, просп. Ленiна, 47, Харкiв 61103 Отримано 15 липня 2005 р., в остаточному вигляді – 24 жовтня 2005 р. Показано, що конденсат виродженого Бозе-газу нейтральних ато- мів володіє електричними властивостями, які відрізняються від тривіальної поляризації атомів у електричному полі. Вводиться поняття ізотропного квадрупольного моменту (ІКМ) нейтрального атома. Розподіл ІКМ відображає особливе просторове впорядкуван- ня в конденсаті і генерує розподіл електричного потенціалу. Роз- глядаються малі коливання Бозе-газу і отримується поправка до Боголюбівського спектру елементарних збуджень у виродженому Бозе-газі. Знайдено додатковий член у рівнянні Гроса-Пітаєвского, який відповідає за таку поправку та побудовано новий тип неліній- ного рівняння Шредіннера. Оскільки Бозе-конденсат є споріднений з надплинною компонентою в He II, то прояв його електричної поведінки може мати відношення до експериментально спостере- жуваної електричної поведінки надплинної рідини Ключові слова: Бозе-конденсат, Боголюбівський спектр, електрична поляризацiя He II PACS: 47.27.Eq, 67.40.Db 778