Dynamics of dimer and z spin component fluctuations in spin-1/2 XY chain
One-dimensional quantum spin- 1/2 XY models admit the rigorous analysis not only of their static properties (i.e. the thermodynamic quantities and the equal-time spin correlation functions) but also of their dynamic properties (i.e. the different-time spin correlation functions, the dynamic...
Gespeichert in:
Datum: | 2005 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут фізики конденсованих систем НАН України
2005
|
Schriftenreihe: | Condensed Matter Physics |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/121060 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Dynamics of dimer and z spin component fluctuations in spin-1/2 XY chain / O. Derzhko, T. Krokhmalskii, P. Hlushak // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 859-867. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-121060 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1210602017-06-14T03:04:59Z Dynamics of dimer and z spin component fluctuations in spin-1/2 XY chain Derzhko, O. Krokhmalskii, T. Hlushak, P. One-dimensional quantum spin- 1/2 XY models admit the rigorous analysis not only of their static properties (i.e. the thermodynamic quantities and the equal-time spin correlation functions) but also of their dynamic properties (i.e. the different-time spin correlation functions, the dynamic susceptibilities, the dynamic structure factors). This becomes possible after exploiting the Jordan-Wigner transformation which reduces the spin model to a model of spinless noninteracting fermions. A number of dynamic quantities (e.g. related to transverse spin operator or dimer operator fluctuations) are entirely determined by two-fermion excitations and can be examined in much detail. Одновимірні квантові спін- 1/2 XY моделі допускають строгий аналіз не лише їх статичних властивостей (тобто термодинамічних величин і однаковочасових спінових кореляційних функцій), але також і їх динамічних властивостей (тобто різночасових спінових кореляційних функцій, динамічних сприйнятливостей, динамічних структурних факторів). Це стає можливим після використання перетворення Йордана-Вігнера, яке зводить спінову модель до моделі безспінових невзаємодіючих ферміонів. Ряд динамічних величин (наприклад, пов’язаних з флуктуаціями оператора поперечної спінової компоненти чи димерного оператора) цілком визначаються двоферміонними збудженнями і можуть бути детально вивчені. 2005 Article Dynamics of dimer and z spin component fluctuations in spin-1/2 XY chain / O. Derzhko, T. Krokhmalskii, P. Hlushak // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 859-867. — Бібліогр.: 12 назв. — англ. 1607-324X PACS: 75.10.-b DOI:10.5488/CMP.8.4.859 http://dspace.nbuv.gov.ua/handle/123456789/121060 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
One-dimensional quantum spin- 1/2 XY models admit the rigorous analysis
not only of their static properties (i.e. the thermodynamic quantities
and the equal-time spin correlation functions) but also of their dynamic
properties (i.e. the different-time spin correlation functions, the dynamic
susceptibilities, the dynamic structure factors). This becomes possible after
exploiting the Jordan-Wigner transformation which reduces the spin model
to a model of spinless noninteracting fermions. A number of dynamic
quantities (e.g. related to transverse spin operator or dimer operator fluctuations)
are entirely determined by two-fermion excitations and can be examined
in much detail. |
format |
Article |
author |
Derzhko, O. Krokhmalskii, T. Hlushak, P. |
spellingShingle |
Derzhko, O. Krokhmalskii, T. Hlushak, P. Dynamics of dimer and z spin component fluctuations in spin-1/2 XY chain Condensed Matter Physics |
author_facet |
Derzhko, O. Krokhmalskii, T. Hlushak, P. |
author_sort |
Derzhko, O. |
title |
Dynamics of dimer and z spin component fluctuations in spin-1/2 XY chain |
title_short |
Dynamics of dimer and z spin component fluctuations in spin-1/2 XY chain |
title_full |
Dynamics of dimer and z spin component fluctuations in spin-1/2 XY chain |
title_fullStr |
Dynamics of dimer and z spin component fluctuations in spin-1/2 XY chain |
title_full_unstemmed |
Dynamics of dimer and z spin component fluctuations in spin-1/2 XY chain |
title_sort |
dynamics of dimer and z spin component fluctuations in spin-1/2 xy chain |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2005 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/121060 |
citation_txt |
Dynamics of dimer and z spin component fluctuations in spin-1/2 XY chain / O. Derzhko, T. Krokhmalskii, P. Hlushak // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 859-867. — Бібліогр.: 12 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT derzhkoo dynamicsofdimerandzspincomponentfluctuationsinspin12xychain AT krokhmalskiit dynamicsofdimerandzspincomponentfluctuationsinspin12xychain AT hlushakp dynamicsofdimerandzspincomponentfluctuationsinspin12xychain |
first_indexed |
2025-07-08T19:07:27Z |
last_indexed |
2025-07-08T19:07:27Z |
_version_ |
1837106881824292864 |
fulltext |
Condensed Matter Physics, 2005, Vol. 8, No. 4(44), pp. 859–867
Dynamics of dimer and z spin
component fluctuations in spin- 1/2
XY chain
O.Derzhko, T.Krokhmalskii, P.Hlushak
Institute for Condensed Matter Physics
of the National Academy of Sciences of Ukraine,
1 Svientsitskii Str., 79011 Lviv, Ukraine
Received August 15, 2005
One-dimensional quantum spin- 1/2 XY models admit the rigorous anal-
ysis not only of their static properties (i.e. the thermodynamic quantities
and the equal-time spin correlation functions) but also of their dynamic
properties (i.e. the different-time spin correlation functions, the dynamic
susceptibilities, the dynamic structure factors). This becomes possible after
exploiting the Jordan-Wigner transformation which reduces the spin mod-
el to a model of spinless noninteracting fermions. A number of dynamic
quantities (e.g. related to transverse spin operator or dimer operator fluctu-
ations) are entirely determined by two-fermion excitations and can be ex-
amined in much detail. We consider the spin- 1/2 XY chain in a transverse
(‖ z) magnetic field with the Hamiltonian
H =
∑
n
J
(
sx
nsx
n+1 + sy
nsy
n+1
)
+
∑
n
Ωsz
n
and calculate the dynamic structure factors
SAB(κ, ω) =
∑
n
exp (−iκn)
∫
∞
−∞
dt exp (iωt) 〈Aj(t)Bj+n(0)〉
for the local spin operators {Am, Bm} =
{
sz
m
, Dm
}
where Dm =
sx
m
sx
m+1
+ sy
m
sy
m+1 is the dimer operator. The results for the dynamic
transverse structure factor Szz(κ, ω) and for the dynamic dimer structure
factor SDD(κ, ω) are known, whereas the analysis of the dynamic struc-
ture factor SzD(κ, ω) = (SDz(κ, ω))
? has not been reported so far. We
compare different two-fermion dynamic quantities contrasting their generic
and specific features.
Key words: quantum spin chains, dynamic structure factors
PACS: 75.10.-b
The subject of analysis of the dynamic properties of low-dimensional quantum
spin systems has attracted considerable interest for the recent years. On the one
c© O.Derzhko, T.Krokhmalskii, P.Hlushak 859
O.Derzhko, T.Krokhmalskii, P.Hlushak
hand, quite often the relevant quantities can be examined rigorously, especially if
the space dimension is equal to one. This is important even if the models in question
are simplified since conventional approximations usually fail after being applied to
low-dimensional quantum spin systems. On the other hand, material science provi-
des a number of magnetic materials which can be modelled using the spin-1/2 XXZ
Heisenberg chains. Therefore, to interpret the experimental data obtained in neu-
tron scattering experiments or resonance experiments for such compounds one needs
a corresponding theory of the dynamic properties. A particular case of the spin-
1/2 XXZ Heisenberg chain, the XY chain, owing to the Jordan-Wigner fermion-
ization trick can be investigated analytically, thus shedding light on the physical
effects that may be observed in less tractable cases.
In what follows, we consider the one-dimensional spin-1/2 XY model in a trans-
verse (‖ z) external field [1] defined by the Hamiltonian
H =
N
∑
n=1
J
(
sx
ns
x
n+1 + sy
ns
y
n+1
)
+
N
∑
n=1
Ωsz
n . (1)
Here J is the exchange interaction constant (we will set further J = −1), Ω is the
external magnetic field, sα = 1/2 ·σα, σα with α = x, y, z are the Pauli matrices, and
N → ∞ is the number of sites. We imposed periodic boundary conditions in (1).
After exploiting the Jordan-Wigner transformation the considered spin model can
be presented in terms of noninteracting spinless fermions with the Hamiltonian
H =
∑
κ
Λκ
(
c†κcκ −
1
2
)
, Λκ = Ω + J cos κ. (2)
Here periodic boundary conditions are implied (the so-called boundary term is not
important for the dynamic quantities examined below) and κ is the quasi-momentum
which takes N values in the region from −π to π.
Important information about the behavior of the system under small perturba-
tions follows from the dynamic susceptibilities [2]
χAB(κ, ω) =
N
∑
n=1
exp (−iκn)
∫ ∞
0
dt exp (i (ω + iε) t)
1
i
〈[Aj(t), Bj+n(0)]〉 ,
ε → +0. (3)
Here Am, Bm are the local operators attached to the site m (for example, the spin
operators sx
m, sy
m, sz
m, the dimer operator Dm = sx
msx
m+1 + sy
msy
m+1 or the trimer
operator Tm = sx
msx
m+2+sy
msy
m+2 [3–8]). Another quantities which reflect the dynamic
properties of the system are the dynamic structure factors
SAB(κ, ω) =
N
∑
n=1
exp (−iκn)
∫ ∞
−∞
dt exp (iωt) 〈Aj(t)Bj+n(0)〉 . (4)
SAB(κ, ω) is connected to the imaginary part of χAB(κ, ω) through the fluctuation-
dissipation theorem. The imaginary and real parts of χAB(κ, ω) are connected by the
860
Dynamics of dimer and z spin component fluctuations
Kramers-Kronig transformation. In what follows we focus on the dynamic structure
factors (4).
Introducing the fermionic representation (2) and exploiting the Wick-Bloch-de
Dominicis theorem we easily calculate the two-spin correlation functions entering
equations (3), (4)
〈sz
n(t)sz
n+l(0)〉 − 〈sz〉2 =
1
N2
∑
κ1,κ2
exp (−i (κ1 − κ2) l) exp (i (Λκ1
− Λκ2
) t)
× nκ1
(1 − nκ2
) , (5)
〈sz
n(t)Dn+l(0)〉 − 〈sz〉〈D〉 =
1
N2
∑
κ1,κ2
exp(−iκ1) + exp(iκ2)
2
exp (−i (κ1 − κ2) l)
× exp (i (Λκ1
− Λκ2
) t) nκ1
(1 − nκ2
) , (6)
〈Dn(t)Dn+l(0)〉 − 〈D〉2 =
1
N2
∑
κ1,κ2
cos2 κ1 + κ2
2
exp (−i (κ1 − κ2) l)
× exp (i (Λκ1
− Λκ2
) t) nκ1
(1 − nκ2
) , (7)
where nκ = (1 + exp (βΛκ))
−1 is the Fermi function and
〈sz〉 =
1
N
N
∑
n=1
〈sz
n〉 = −
1
2N
∑
κ
tanh
βΛκ
2
,
〈D〉 =
1
N
N
∑
n=1
〈Dn〉 = −
1
2N
∑
κ
cos κ tanh
βΛκ
2
.
The associated dynamic structure factors are obtained from equations (5)–(7)
by Fourier transform. The resulting expressions for N → ∞ can be brought into the
form
Szz(κ, ω) − 2πNδκ,0δ(ω)〈sz〉2 =
∫ π
−π
dκ1nκ1
(1 − nκ1+κ) δ (ω + Λκ1
−Λκ1+κ)
=
∑
κ?
nκ? (1 − nκ+κ?)
2|J sin κ
2
cos
(
κ
2
+ κ?
)
|
, (8)
SzD(κ, ω)−2πNδκ,0δ(ω)〈sz〉〈D〉 = exp
(
i
κ
2
)
∑
κ?
cos
(
κ
2
+ κ?
)
nκ? (1 − nκ+κ?)
2|J sin κ
2
cos
(
κ
2
+ κ?
)
|
, (9)
SDz(κ, ω) = (SzD(κ, ω))? , (10)
SDD(κ, ω) − 2πNδκ,0δ(ω)〈D〉2 =
∑
κ?
cos2
(
κ
2
+ κ?
)
nκ? (1 − nκ+κ?)
2|J sin κ
2
cos
(
κ
2
+ κ?
)
|
, (11)
where −π 6 κ? 6 π are the solutions of the equation
ω = −2J sin
κ
2
sin
(κ
2
+ κ?
)
. (12)
861
O.Derzhko, T.Krokhmalskii, P.Hlushak
We can combine formulas (8)–(11) rewriting them in the form
SAB(κ, ω) − 2πNδκ,0δ(ω)〈A〉〈B〉
=
∫ π
−π
dκ1dκ2C
(2)
AB(κ1, κ2)nκ1
(1 − nκ2
) δ (ω + Λκ1
− Λκ2
) δκ+κ1−κ2,0
=
∑
κ?
C
(2)
AB(κ, κ?)nκ? (1 − nκ+κ?)
2|J sin κ
2
cos
(
κ
2
+ κ?
)
|
(13)
with
C(2)
zz (κ, κ?) = 1, (14)
C
(2)
zD(κ, κ?) = exp
(
i
κ
2
)
cos
(κ
2
+ κ?
)
, (15)
C
(2)
Dz (κ, κ?) =
(
C
(2)
zD(κ, κ?)
)?
, (16)
C
(2)
DD(κ, κ?) = cos2
(κ
2
+ κ?
)
. (17)
The dynamic transverse structure factor Szz(κ, ω) was obtained by Th. Niemeijer
(see [9]), the dynamic dimer structure factor SDD(κ, ω) was examined in [3–5].
Figure 1. The l. h. s. of equation (9) multiplied by exp (−i[κ/2]) for the spin
chain (1) with J = −1 and Ω = 0.1 (a), Ω = 0.3 (b), Ω = 0.6 (c), Ω = 0.9 (d) at
zero temperature β → ∞.
862
Dynamics of dimer and z spin component fluctuations
Figure 2. The same as in figure 1 at β = 10. Note the different vertical scales in
figure 1 and figure 2.
Figure 3. The same as in figure 1 at β = 1. Note the different vertical scales in
figure 1 and figure 3.
To the best of our knowledge, the dynamic structure factor SzD(κ, ω) = (SDz(κ, ω))?
has not been discussed so far.
863
O.Derzhko, T.Krokhmalskii, P.Hlushak
In figures 1–3 we plot the dynamic structure factor SzD(κ, ω) at different tem-
peratures. These plots demonstrate not only the specific features of the dynamic
structure factor SzD(κ, ω) but also the generic features of all two-fermion dynamic
structure factors (13).
Figure 4. Two-fermion excitation continuum which governs the ground-state dy-
namic structure factors (13). We set |J | = 1 and Ω = 0.1 (a) Ω = 0.3 (b), Ω = 0.6
(c), Ω = 0.9 (d). The lower boundary (18) (bold lines), the middle boundary
(19) (dashed lines), the upper boundary (20) (thin lines), the line of potential
singularities (21) (dotted lines).
From equation (13) it is clearly seen that the dynamic structure factors (8),
(9), (10), (11) are governed entirely by the two-fermion (particle-hole) excitation
continuum the properties of which were examined in [9,10]. Hereinafter we briefly
account for these results. At zero temperature β → ∞ the two-fermion excitation
continuum exists only if |Ω| < |J | and has the following lower, middle and upper
boundaries in the plane wave-vector κ – frequency ω
ωl
|J |
= 2 sin
|κ|
2
∣
∣
∣
∣
sin
(
|κ|
2
− α
)∣
∣
∣
∣
, (18)
ωm
|J |
= 2 sin
|κ|
2
sin
(
|κ|
2
+ α
)
, (19)
864
Dynamics of dimer and z spin component fluctuations
ωu
|J |
=
{
2 sin |κ|
2
sin
(
|κ|
2
+ α
)
, if 0 6 |κ| 6 π − 2α,
2 sin |κ|
2
, if π − 2α 6 |κ| 6 π,
(20)
respectively; here we have introduced the parameter α = arccos(Ω/|J |) which varies
from π when Ω = −|J | to 0 when Ω = |J |. The region ωl 6 ω 6 ωm corresponds to
the lower two-fermion excitation continuum, whereas the region ωm 6 ω 6 ωu corre-
sponds to the upper two-fermion excitation continuum. The ω-profiles at fixed κ of
the two-fermion dynamic structure factors (13) may exhibit Van Hove’s singularities
(as the density of one-particle states in one dimension) when ω → ωs − 0,
ωs
|J |
= 2 sin
|κ|
2
. (21)
Figure 4 shows expressions (18)–(21) plotted for |J | = 1 and various Ω. As temper-
ature increases the lower boundary of the two-fermion excitation continuum smears
out, i.e. ωl = 0, and the upper boundary becomes ωu = 2|J | sin(|κ|/2).
The specific features of different dynamic structure factors are connected with
the explicit form of the function C
(2)
AB(κ, κ?) (14)–(17). Thus, the dynamic dimer
structure factor vanishes (and hence does not diverge) along ωs (21) since C
(2)
DD(κ, κ?)
(17) cancels the zero in the denominator in equation (13). This is contrary to the case
of the dynamic transverse structure factor with C
(2)
zz (κ, κ?) (14). Moreover, the zero-
temperature dynamic structure factor SzD(κ, ω) is zero in the upper two-fermion
excitation continuum, i.e. for ωm 6 ω 6 ωu. For this region of the κ–ω plane the
two roots κ?
1 and κ?
2 of equation (12) yield in equation (13) two contributions of the
same value but with opposite signs. At nonzero temperatures the values of these
contributions become different and SzD(κ, ω) deviates from zero in the upper two-
fermion excitation continuum. In the lower two-fermion excitation continuum one
of the roots does not contribute at zero temperature due to the Fermi functions in
equation (13). However, when temperature tends to infinity β → 0 the restrictions
owing to the Fermi functions in equation (13) disappear and two roots κ?
1 and κ?
2
come into play for all 0 6 ω 6 ωu. They again have the same value but opposite
signs and as a result, SzD(κ, ω) disappears within the whole two-fermion excitation
continuum in the κ–ω plane. This behavior is illustrated in figures 1–3.
Thus, all the considered dynamic quantities exhibit the same generic properties
controlled by the δ-functions and the Fermi functions in equation (13) (lower, mid-
dle and upper boundaries, soft modes, Van Hove’s singularities) and some specific
properties controlled by the function C
(2)
AB(κ, κ?) (zero values in the accessible region
of the κ–ω plane, disappearance of Van Hove’s singularities). Our results may be
important from the theoretical point of view helping to understand the dynamic
properties of quantum spin chains. Thus, equation (13) gives a hint to the form of
multi-fermion excitation continua contributions to dynamic quantities (see [7,8]).
On the other hand, we note that spin-1/2 XY chains are realized in some quasi-one-
dimensional magnetic insulators [11,12], and hence our findings may have a relation
to the experimental data obtained in dynamic experiments.
865
O.Derzhko, T.Krokhmalskii, P.Hlushak
This study was supported by the STCU under the project #1673. The authors
thank Prof. Joachim Stolze and Prof. Gerhard Müller for collaboration on closely
related subjects [7,8]. The paper was partially presented at the International Con-
ference on Strongly Correlated Electron Systems (Vienna, July 26 - 30, 2005). O. D.
and T. K. thank the Organizing Committee of the SCES’05 for the support to attend
the conference.
References
1. Lieb E., Schultz T., Mattis D., Ann. Phys. (N.Y.), 1961, 16, 407.
2. Zubarev D.N. Njeravnovjesnaja Statistichjeskaja Tjermodinamika. Nauka, Moskva,
1971 (in Russian).
3. Suzuura H., Yasuhara H., Furusaki A., Nagaosa N., Tokura Y., Phys. Rev. Lett., 1996,
76, 2579.
4. Yongmin Yu, Müller G., Viswanath V.S., Phys. Rev. B, 1996, 54, 9242.
5. Lorenzana J., Eder R., Phys. Rev. B, 1997, 55, R3358.
6. Werner R., Phys. Rev. B, 2001, 63, 174416.
7. Derzhko O., Krokhmalskii T., Stolze J., Müller G., Phys. Rev. B, 2005, 71, 104432.
8. Derzhko O., Krokhmalskii T., Stolze J., Müller G., to appear in Physica B, 2005.
9. Müller G., Thomas H., Beck H., Bonner J.C., Phys. Rev. B, 1981, 24, 1429.
10. Taylor J.H., Müller G., Physica A, 1985, 130, 1.
11. Kenzelmann M., Coldea R., Tennant D.A., Visser D., Hofmann M., Smeibidl P., Tyl-
czynski Z., Phys. Rev. B, 2002, 65, 144432.
12. Rainford B.D., private communication (2005).
866
Dynamics of dimer and z spin component fluctuations
Динаміка флуктуацій димерного оператора і
оператора z спінової компоненти у спін-1/2 XY
ланцюжку
О.Держко, Т.Крохмальський, П.Глушак
Інститут фізики конденсованих систем НАН України,
79011 Львів, вул. Свєнціцького, 1
Отримано 15 серпня 2005 р.
Одновимірні квантові спін- 1/2 XY моделі допускають строгий
аналіз не лише їх статичних властивостей (тобто термодинамічних
величин і однаковочасових спінових кореляційних функцій), але
також і їх динамічних властивостей (тобто різночасових спінових
кореляційних функцій, динамічних сприйнятливостей, динамічних
структурних факторів). Це стає можливим після використання
перетворення Йордана-Вігнера, яке зводить спінову модель до
моделі безспінових невзаємодіючих ферміонів. Ряд динамічних
величин (наприклад, пов’язаних з флуктуаціями оператора по-
перечної спінової компоненти чи димерного оператора) цілком
визначаються двоферміонними збудженнями і можуть бути деталь-
но вивчені. Ми розглядаємо спін- 1/2 XY ланцюжок у поперечному
(‖ z) магнітному полі з гамільтоніаном
H =
∑
n
J
(
sx
nsx
n+1 + sy
nsy
n+1
)
+
∑
n
Ωsz
n
і обчислюємо динамічні структурні фактори
SAB(κ, ω) =
∑
n
exp (−iκn)
∫
∞
−∞
dt exp (iωt) 〈Aj(t)Bj+n(0)〉
для локальних спінових операторів {Am, Bm} =
{
sz
m
, Dm
}
, де
Dm = sx
m
sx
m+1
+ sy
m
sy
m+1 є димерним оператором. Результати
для динамічного поперечного структурного фактора Szz(κ, ω) і для
динамічного димерного структурного фактора SDD(κ, ω) є відомі,
тоді ж як динамічний структурний фактор SzD(κ, ω) = (SDz(κ, ω))
?
досі не був проаналізований. Ми порівнюємо різні двоферміонні
динамічні величини, співставляючи їхні загальні і специфічні влас-
тивості.
Ключові слова: квантові спінові ланцюжки, динамічні структурні
фактори
PACS: 75.10.-b
867
868
|