Interface model of low temperature plasticity in high uniaxially strained monocrystalline semiconductors
The manifestation of the low temperature plasticity (LTP) in highly uniaxially strained Ge and Si single crystals was deduced from analysis of the both tensoeffect measurements data and defect-selective etching patterns of specimens. An appearance of additional tensoeffect mechanisms after the LTP d...
Saved in:
Date: | 2000 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Published: |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
2000
|
Series: | Semiconductor Physics Quantum Electronics & Optoelectronics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/121177 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Interface model of low temperature plasticity in high uniaxially strained monocrystalline semiconductors / Ye.F. Venger, V.V. Kolomoets, V.F. Machulin // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2000. — Т. 3, № 3. — С. 291-294. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | The manifestation of the low temperature plasticity (LTP) in highly uniaxially strained Ge and Si single crystals was deduced from analysis of the both tensoeffect measurements data and defect-selective etching patterns of specimens. An appearance of additional tensoeffect mechanisms after the LTP display we attribute to the generation of electrical active defects of crystalline structure when the applied stress exceed some critical one. We found that under LTP conditions the generated dislocation pile-ups are directly concentrated in the phase-boundary field of some structural imperfections of crystalline lattice. The interface model of LTP phenomenon in monocrystalline semiconductors was proposed for acceptable explanation of the dislocation generation in the initially dislocation-free crystals. |
---|