Editorial Note
Gespeichert in:
Datum: | 2000 |
---|---|
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут фізики конденсованих систем НАН України
2000
|
Schriftenreihe: | Condensed Matter Physics |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/121262 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Editorial Note // Condensed Matter Physics. — 2000. — Т. 3, № 1(21). — С. 3-4. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-121262 |
---|---|
record_format |
dspace |
fulltext |
The development of methods of the theory of nonequilibrium processes for ther-
mofield quantum systems is one of the most important trends in modern theoretical
physics. Nowadays, methods of the quantum field theory, on the one hand, and of
nonequilibrium statistical mechanics, on the other hand, are powerful instruments
in the study of interacting quantum fields and particles. Unification of these meth-
ods can be useful and effective for solving numerous problems of nonequilibrium
thermofield quantum systems. Methods of the quantum field theory (such as the
Green function and renormalization group methods) turned out to be fruitful and
promising in statistical mechanics. A considerable success in describing thermofield
quantum systems was reached by Umezawa and Takahashi and co-authors based
on the thermofield dynamics (TFD). This theory is a synthesis of the usual quan-
tum field theory and equilibrium statistical mechanics by Gibbs. It is based on a
dual structure of quantum field theory i.e., a dynamical reflection of the descrip-
tion in terms of Heisenberg fields into some description using “physical” fields which
correspond to the observables, namely to the spontaneous symmetry breaking, Gold-
stone’s bosons condensation, dynamical rebuilding of a symmetry etc.
The generalization of thermofield dynamics on nonequilibrium states of quantum
field systems in papers by Arimitsu and Umezawa, and Suzuki was an important
step in this direction. The new theory has been called the nonequilibrium ther-
mofield dynamics (NETFD). It is formulated with the help of two conceptions:
rough description of a nonequilibrium state (using the projection operators method,
for example), and the conception of a thermal vacuum state. The thermal Liouville
space is introduced in this case. Its definition and properties were well defined in
the papers by Fano and Schmuz.
The papers of the first part of the present issue (p. 5–168) describe some applica-
tions of the nonequilibrium thermofield dynamics and other methods for the descrip-
tion of classical and quantum nonequilibrium properties of both non-relativistic and
relativistic systems. In particular, problems of the description of nonequilibrium pro-
cesses of open boson and fermion systems, classical relativistic system of point-like
particles in an electromagnetic field, electron-phonon system and massive fermion
in a hot medium are considered.
T.Arimitsu, M.Tokarchuk
3
4
|
spelling |
irk-123456789-1212622017-06-14T03:07:49Z Editorial Note 2000 Article Editorial Note // Condensed Matter Physics. — 2000. — Т. 3, № 1(21). — С. 3-4. — англ. 1607-324X DOI:10.5488/CMP.3.1.3 http://dspace.nbuv.gov.ua/handle/123456789/121262 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
format |
Article |
title |
Editorial Note |
spellingShingle |
Editorial Note Condensed Matter Physics |
title_short |
Editorial Note |
title_full |
Editorial Note |
title_fullStr |
Editorial Note |
title_full_unstemmed |
Editorial Note |
title_sort |
editorial note |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2000 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/121262 |
citation_txt |
Editorial Note // Condensed Matter Physics. — 2000. — Т. 3, № 1(21). — С. 3-4. — англ. |
series |
Condensed Matter Physics |
first_indexed |
2025-07-08T19:29:46Z |
last_indexed |
2025-07-08T19:29:46Z |
_version_ |
1837108286045814784 |