Method of intermediate problems in the theory of Gaussian quantum dots placed in a magnetic field

Applicability of the method of intermediate problems to the investigation of the energy eigenvalues and eigenstates of a quantum dot (QD) formed by a Gaussian confining potential in the presence of an external magnetic field is discussed. Being smooth at the QD boundaries and of finite depth and r...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Soldatov, A.V., Bogolyubov, N.N., Kruchinin, S.P., Jr.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2006
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121309
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Method of intermediate problems in the theory of Gaussian quantum dots placed in a magnetic field / A.V. Soldatov, N.N. Bogolyubov, Jr., S.P. Kruchinin // Condensed Matter Physics. — 2006. — Т. 9, № 1(45). — С. 151–159. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Applicability of the method of intermediate problems to the investigation of the energy eigenvalues and eigenstates of a quantum dot (QD) formed by a Gaussian confining potential in the presence of an external magnetic field is discussed. Being smooth at the QD boundaries and of finite depth and range, this potential can only confine a finite number of excess electrons thus forming a realistic model of a QD with smooth interface between the QD and its embedding environment. It is argued that the method of intermediate problems, which provides convergent improvable lower bound estimates for eigenvalues of linear half-bound Hermitian operators in Hilbert space, can be fused with the classical Rayleigh-Ritz variational method and stochastic variational method thus resulting in an efficient tool for analytical and numerical studies of the energy spectrum and eigenstates of the Gaussian quantum dots, confining small-to-medium number of excess electrons, with controllable or prescribed precision.