Nonlinear Peltier effect and the nonequilibrium Jonson-Mahan theorem
We generalize the many-body formalism for the Peltier effect to the nonlinear/nonequilibrium regime corresponding to large amplitude (spatially uniform but time-dependent) electric fields. We find a relationship between the expectation values for the charge current and for the part of the heat cur...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2006
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/121367 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Nonlinear Peltier effect and the nonequilibrium Jonson-Mahan theorem / J.K. Freericks, V. Zlatic // Condensed Matter Physics. — 2006. — Т. 9, № 3(47). — С. 603–617. — Бібліогр.: 24 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We generalize the many-body formalism for the Peltier effect to the nonlinear/nonequilibrium regime corresponding
to large amplitude (spatially uniform but time-dependent) electric fields. We find a relationship
between the expectation values for the charge current and for the part of the heat current that reduces to the
Jonson-Mahan theorem in the linear-response regime. The nonlinear-response Peltier effect has an extra term
in the heat current that is related to Joule heating (we are unable to fully analyze this term). The formalism
holds in all dimensions and for arbitrary many-body systems that have local interactions. We illustrate it for the
Falicov-Kimball, Hubbard, and periodic Anderson models. |
---|