On the spectral relations for multitime correlation functions
A general approach to the derivation of the spectral relations for the multitime correlation functions is presented. A special attention is paid to the consideration of the non-ergodic (conserving) contributions and it is shown that such contributions can be treated in a rigorous way using multiti...
Збережено в:
Дата: | 2006 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2006
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/121370 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the spectral relations for multitime correlation functions / A.M. Shvaika // Condensed Matter Physics. — 2006. — Т. 9, № 3(47). — С. 447–458. — Бібліогр.: 39 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-121370 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1213702017-06-15T03:02:52Z On the spectral relations for multitime correlation functions Shvaika, A.M. A general approach to the derivation of the spectral relations for the multitime correlation functions is presented. A special attention is paid to the consideration of the non-ergodic (conserving) contributions and it is shown that such contributions can be treated in a rigorous way using multitime temperature Green functions. Representation of the multitime Green functions in terms of the spectral densities and solution of the reverse problem, i.e., finding the spectral densities from the known Green functions, are given for the case of the three-time correlation functions. Запропоновано загальний пiдхiд до отримання спектральних спiввiдношень для багаточасових кореляцiйних функцiй. Особлива увага звертається на розгляд неергодичних (збережних) внескiв i показано, що такi внески можна послiдовно отримати використовуючи багаточасовi температурнi функцiї Ґрiна. Для випадку тричасових кореляцiйних функцiй знайдено представлення багаточасових функцiй Ґрiна через спектральнi густини i розв’язано обернену задачу – вираження спектральних густин через вiдомi функцiї Ґрiна. 2006 Article On the spectral relations for multitime correlation functions / A.M. Shvaika // Condensed Matter Physics. — 2006. — Т. 9, № 3(47). — С. 447–458. — Бібліогр.: 39 назв. — англ. 1607-324X PACS: 05.30.-d DOI:10.5488/CMP.9.3.447 http://dspace.nbuv.gov.ua/handle/123456789/121370 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A general approach to the derivation of the spectral relations for the multitime correlation functions is presented.
A special attention is paid to the consideration of the non-ergodic (conserving) contributions and it is
shown that such contributions can be treated in a rigorous way using multitime temperature Green functions.
Representation of the multitime Green functions in terms of the spectral densities and solution of the reverse
problem, i.e., finding the spectral densities from the known Green functions, are given for the case of the
three-time correlation functions. |
format |
Article |
author |
Shvaika, A.M. |
spellingShingle |
Shvaika, A.M. On the spectral relations for multitime correlation functions Condensed Matter Physics |
author_facet |
Shvaika, A.M. |
author_sort |
Shvaika, A.M. |
title |
On the spectral relations for multitime correlation functions |
title_short |
On the spectral relations for multitime correlation functions |
title_full |
On the spectral relations for multitime correlation functions |
title_fullStr |
On the spectral relations for multitime correlation functions |
title_full_unstemmed |
On the spectral relations for multitime correlation functions |
title_sort |
on the spectral relations for multitime correlation functions |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/121370 |
citation_txt |
On the spectral relations for multitime correlation functions / A.M. Shvaika // Condensed Matter Physics. — 2006. — Т. 9, № 3(47). — С. 447–458. — Бібліогр.: 39 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT shvaikaam onthespectralrelationsformultitimecorrelationfunctions |
first_indexed |
2025-07-08T19:44:01Z |
last_indexed |
2025-07-08T19:44:01Z |
_version_ |
1837109185416790016 |
fulltext |
Condensed Matter Physics 2006, Vol. 9, No 3(47), pp. 447–458
On the spectral relations for multitime correlation
functions
A.M.Shvaika
Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine,
1 Svientsitskii Str., 79011 Lviv, Ukraine
Received April 17, 2006
A general approach to the derivation of the spectral relations for the multitime correlation functions is pre-
sented. A special attention is paid to the consideration of the non-ergodic (conserving) contributions and it is
shown that such contributions can be treated in a rigorous way using multitime temperature Green functions.
Representation of the multitime Green functions in terms of the spectral densities and solution of the reverse
problem, i.e., finding the spectral densities from the known Green functions, are given for the case of the
three-time correlation functions.
Key words: multitime correlation functions, Green functions, spectral relations, non-ergodicity
PACS: 05.30.-d
1. Introduction
One of the main tasks of the quantum statistic physics is calculation of the correlation functions
for many-body systems of different kind because they contain the most important information
about the observable quantities and system properties. As it was first noticed by Kubo [1], linear
transport coefficients are expressed in terms of the Fourier transforms of appropriate correlation
functions, which relate by spectral relations to the two-time Green functions. Since that time the
Green’s function method has been noticeable and extensively developed [2–4], providing equations
that permit to calculate the expectation values of operators and observable quantities. But very
soon it was noticed that spectral relations should be completed by a special treatment of the
pole at zero frequency, which gives additional contribution connected with the presence of the
conserving quantities [5–7]. Later, it was shown that such contributions describe the difference
between the isothermal and isolated response of the many-body system and are specific for the
non-ergodic systems [1,6–8] where the regions exist in the phase space which cannot be achieved
by the trajectory of the point that describes an evolution of the many-body system. In the Green’s
function formalism, the issue of ergodicity appears as a difficulty in determining the zero-frequency
bosonic propagators [5–7,9–18]. Nevertheless, even now many textbooks on the quantum statistics
and many-body theory do not provide complete discussion of the spectral relations and special
treatment of the zero-frequency functions.
The equations of motion do not uniquely determine the causal and retarded Green’s functions,
but only up to δ-function of frequency with some unknown coefficients which produce additional
contributions in the zero-frequency functions (see, section 2). Usually, these zero-frequency func-
tions are fixed by being assigned their ergodic values, but this cannot be justified a priori. A
wrong determination of them dramatically affects the values of directly measurable quantities like
compressibility, specific heat, and magnetic susceptibility. In order to handle these zero-frequency
functions, different approaches were developed, e.g. anti-commutator bosonic Green functions [14],
direct algebraic method [19], singular-value decomposition [20], algebra constraints in the compos-
ite operator method [21,22], etc.
On the other hand, temperature Green functions [23,24] are free from these issues and make
it possible to avoid all complications connected with the presense of the non-ergodic terms [13],
c© A.M.Shvaika 447
A.M.Shvaika
e.g. they permit to calculate isothermal susceptibilities for the Ising model, where Kubo response
is equal to zero, as well as for the more complicated spin and electron [26,27] and pseudospin-
electron [28] systems, and for the infinite-dimensional Falicov-Kimball model [29,30], where the
exact expression for the isothermal charge susceptibility [31,32] contains both Kubo response,
which is finite at all temperatures, and non-ergodic contribution, whose divergencies give the phase
transition points.
The above mentioned issues concerning a special treatment of the zero-frequency functions are
mostly investigated for the two-time correlation and Green functions, but nobody has cosidered
this for a multitime correlation. In the original Kubo’s paper [1], the formulation of the transport
theory is not limited to the linear phenomena, and the solution of the Liouville equation for the
density matrix is given to the arbitrary order in the strength of disturbance. Resulting multitime
correlation and Green functions can be used for the description of the nonlinear transport phe-
nomena and resonances [33–35]. Besides, multitime correlation functions also appear as puzzles in
different orders of the perturbation theories for many-body systems [36]. Moreover, cross-sections
of the inelastic scattering processes can be expressed in terms of the multitime correlation func-
tions too, e.g. for the electronic inelastic light (Raman) scattering. The nonresonant, mixed, and
resonant responses are connected with the two-time, three-time, and four-time temperature Green
functions [37,38], respectively, and can be rewritten in terms of the multitime correlation functi-
ons. Nonresonant contribution is connected with the spectral density of the two-time correlation
function
RN (q,Ω) = 2πg2(ki)g
2(ko)Iγ̃γ̃(Ω,−Ω), (1.1)
mixed contribution is connected with the spectral density of the three-time correlation functions
RM (q,Ω) = 2πg2(ki)g
2(ko)
+∞∫
−∞
dω
[
Iγ̃j(o)j(i)(Ω, ω − Ω,−ω)
ω − ωi + iδ
+
Iγ̃j(i)j(o)(Ω, ω − Ω,−ω)
ω + ωo − iδ
+
Ij(i)j(o)γ̃(ω,Ω − ω,−Ω)
ω − ωi − iδ
+
Ij(o)j(i)γ̃(ω,Ω − ω,−Ω)
ω + ωo + iδ
]
, (1.2)
and resonant contribution is connected with the spectral density of the four-time correlation
functions
RR(q,Ω) = 2πg2(ki)g
2(ko)
+∞∫
−∞
dω
+∞∫
−∞
dω̃
×
[
Ij(i)j(o)j(o)j(i)(ω,Ω − ω, ω̃ − Ω,−ω̃)
(ω − ωi − iδ)(ω̃ − ωi + iδ)
+
Ij(o)j(i)j(i)j(o)(ω,Ω − ω, ω̃ − Ω,−ω̃)
(ω + ωo + iδ)(ω̃ + ωo − iδ)
+
Ij(o)j(i)j(o)j(i)(ω,Ω − ω, ω̃ − Ω,−ω̃)
(ω + ωo + iδ)(ω̃ − ωi + iδ)
+
Ij(i)j(o)j(i)j(o)(ω,Ω − ω, ω̃ − Ω,−ω̃)
(ω − ωi − iδ)(ω̃ + ωo − iδ)
]
, (1.3)
where IAB...(ω1, ω2, . . .) are spectral densities of multitime correlation functions (see below) and ˆ̃γ
and ĵ(i,o) are expressed in terms of the stress tensor and current operator, respectively.
In general, spectral relations include (a) representation of the observable quantities in terms of
the spectral densities of the multitime correlation functions [like equations (1.1), (1.2), and (1.3)
for the inelastic light scattering], (b) extraction of the non-ergodic contributions in the spectral
densities, (c) representation of the multitime temperature Green functions in terms of the spectral
densities, and (d) solution of the reverse problem, i.e., finding the spectral densities from the known
multitime temperature Green functions and based on this calculating the observable quantities.
Spectral relations for multitime correlation functions were formulated in [4,39] only for the case
of the multitime generalizations of the retarded and advanced functions without considering the
zero-frequency non-ergodic contributions. The main purpose of this paper is to show how non-
ergodic contributions enter the multitime correlation functions and how a complete set of spectral
relations for the multitime correlation and Green functions can be derived.
448
On the spectral relations for multitime correlation functions
2. Two-time correlation functions
Before we start considering the spectral relations for the multitime correlation functions, let us
remind basic relations and the main results for the two-time correlation functions. In general, a
two-time correlation function is defined by the following expression
KAB(t1 − t2) = 〈Â(t1)B̂(t2)〉, (2.1)
where Â(t) = eiHtÂe−iHt is an operator  in the Heisenberg representation, and angular brackets
denote statistical average with total Hamiltonian of the many-body system. Here and below we
shall consider the case of the bosonic operators only, generalization for the fermionic one being
obvious. We can perform Fourier transformation of equation (2.1) that gives a spectral density for
the two-time correlation function
IAB(ω1,−ω1) =
1
2π
+∞∫
−∞
d(t1 − t2)e
iω1(t1−t2)KAB(t1 − t2) = ĨAB(ω1,−ω1) + δ(ω1)ĨAB(◦, ◦), (2.2)
where we have separated two contributions
ĨAB(ω1,−ω1) =
1
Z
∑
jl
′
e−βεj AjlBljδ(εjl + ω1), (2.3)
ĨAB(◦, ◦) =
1
Z
∑
jl
εj=εl
e−βεj AjlBlj (2.4)
with different frequency and time dependences. The first one is time-dependent and includes sum
over states with different energies (εjl ≡ εj−εl 6= 0) denoted by prime (2.3). We shall call it regular
contribution, and the second one is purely static and includes sum over the states with the same
energy (2.4). We shall call it non-ergodic contribution. Here, Ajl = 〈j|Â|l〉 are matrix elements
of the operator Â, Z =
∑
l e
−βεl is partition function, and ◦ denotes that given contribution
does not depend on the respective frequency. Besides, spectral densities (2.2) satisfy the following
permutation relation
IAB(ω1,−ω1) = IBA(−ω1, ω1)e
βω1 (2.5)
and for the given operators  and B̂ there is only one nonidentical spectral density. At this point
there is no special need separating regular and non-ergodic contributions, and, as a rule, in the
textbooks nobody does it. But such separation becomes important when one is going to find
spectral densities using spectral relations for the two-time retarded Green’s function
G
(r)
AB(t1 − t2) =
〈〈
Â(t1)|B̂(t2)
〉〉
= −iΘ(t1 − t2)
〈[
Â(t1), B̂(t2)
]〉
. (2.6)
Its Fourier transformation, from the formal point of view,
GAB(ω1,−ω1) =
1
2π
∞∫
−∞
d(t1 − t2)e
iω1(t1−t2)GAB(t1 − t2) = G̃AB(ω1,−ω1) + δ(ω1)G̃c(◦, ◦) (2.7)
also includes two contributions with different time dependences
G̃AB(ω1,−ω1) =
+∞∫
−∞
dω̃1ĨAB(ω̃1,−ω̃1)
1 − e−βω̃1
ω̃1 − ω1 ± iδ
, (2.8)
G̃AB(◦, ◦) = ĨAB(◦, ◦), (2.9)
but only the first one can be derived using an equation of motion techniques
ω1GAB(ω1,−ω1) = ω1G̃AB(ω1,−ω1) (2.10)
449
A.M.Shvaika
and the second one is omitted in the equations of motion
ω1δ(ω1)G̃AB(◦, ◦) ≡ 0.
As a result, a corresponding static contribution into spectral density cannot be handled directly
by the spectral theorem for the retarded Green functions.
On the other hand, a method of the temperature or Matsubara Green functions permits to avoid
all the complications connected with the presense of the non-ergodic terms and obtain all contri-
butions in the spectral density in a straightforward way [13]. In general, a two-time temperature
Green’s function can be defined as
Kc(τ1 − τ2) = 〈T Â(τ1)B̂(τ2)〉, (2.11)
where Â(τ) = eHτ Âe−Hτ , τ is imaginary time (inverse temperature), and T is operator of the
imaginary time chronological ordering. Its Fourier transform
Kc(iν1,−iν1) =
β∫
0
d(τ1 − τ2)e
iν1(τ1−τ2)Kc(τ1 − τ2) = K̃c(iν1,−iν1) + β∆(iν1)K̃c(◦, ◦), (2.12)
where iν1 ≡ iων1
= 2πiTν1 are Matsubara’s frequency and
∆(z) =
{
1, z = 0,
0, z 6= 0
(2.13)
is generalization of the Kronecker symbol, also contains two contributions with different time
dependences
K̃c(iν1,−iν1) =
+∞∫
−∞
dω̃1ĨAB(ω̃1,−ω̃1)
1 − e−βω̃1
ω̃1 − iν1
, (2.14)
K̃c(◦, ◦) = ĨAB(◦, ◦). (2.15)
As a rule, temperature Green functions are handled using different kinds of diagrammatic techni-
ques which permit to calculate contributions with ∆-symbols and according to (2.15) they can be
identified as non-ergodic contributions in spectral densities, which is the main difference from the
case of the retarded Green functions. For the non-ergodic systems such contributions are the main
ones that determine the critical behavior. A typical example is the Ising model for which there are
only non-ergodic contributions whose divergencies give Curie points and there are no regular ones.
Another example of the non-ergodic fermionic system is the Falicov-Kimball model [29,30] whose
isothermal charge susceptibility contains both non-ergodic and regular contributions but only the
first one determines the critical point [31,32]. Regular contribution in spectral density is connected
with nonanalyticy (imaginary part) of the Green’s function at real axis and can be obtained by
performing an analytic continuation of the Matsubara Green’s function from the imaginary to
complex frequencies and then to the real one iν1 → z1 → ω1 ± iδ
K̃c(z1,−z1)
∣∣∣∣
1
≡
1
2πi
K̃c(z1,−z1)
∣∣∣∣
z1=ω1+iδ
z1=ω1−iδ
= ĨAB(ω1,−ω1)(1 − e−βω1), (2.16)
that completes spectral relations for the two-time correlation functions.
3. Three-time correlation functions
Now let us proceed to the consideration of the three-time correlation functions. Generalization
for the case of the higher-order multitime correlation functions can be done in the same way, but
it is much more cumbersome and will not be considered here.
450
On the spectral relations for multitime correlation functions
Three-time correlation function can be defined in a usual way as
KABC(t1, t2, t3) = 〈Â(t1)B̂(t2)Ĉ(t3)〉. (3.1)
Here, we shall consider only the case of the equilibrium many-body systems which are time-shift
invariant
KABC(t1, t2, t3) = KABC(t1 − t, t2 − t, t3 − t). (3.2)
Spectral density is defined as its Fourier transform
IABC(ω1, ω2, ω3) =
1
(2π)2
+∞∫
−∞
d(t1 − t3)
+∞∫
−∞
d(t2 − t3)e
i(ω1t1+ω2t2+ω3t3)KABC(t1, t2, t3)
=
[
ĨABC(ω1, ω2, ω3) + δ(ω1)ĨABC(◦,−ω3, ω3) + δ(ω2)ĨABC(ω1, ◦,−ω1)
+ δ(ω3)ĨABC(−ω2, ω2, ◦) + δ(ω1)δ(ω2)ĨABC(◦, ◦, ◦)
]
∆(ω1 + ω2 + ω3) (3.3)
and includes five different contributions with different time dependences
ĨABC(ω1, ω2,−ω1 − ω2) =
1
Z
∑
jlf
′
e−βεj AjlBlfCfjδ(εjl + ω1)δ(εlf + ω2), (3.4)
ĨABC(◦,−ω3, ω3) =
1
Z
∑
jlf
εj=εl 6=εf
e−βεj AjlBlfCfjδ(εfj + ω3), (3.5)
ĨABC(ω1, ◦,−ω1) =
1
Z
∑
jlf
εl=εf 6=εj
e−βεj AjlBlfCfjδ(εjl + ω1), (3.6)
ĨABC(−ω2, ω2, ◦) =
1
Z
∑
jlf
εf=εj 6=εl
e−βεj AjlBlfCfjδ(εlf + ω2), (3.7)
ĨABC(◦, ◦, ◦) =
1
Z
∑
jlf
εf=εj=εl
e−βεj AjlBlfCfj . (3.8)
Besides, the total spectral density (3.3) as well as each contribution satisfy the following cyclic
permutation identities (ω1 + ω2 + ω3 = 0) [4,36]
IABC(ω1, ω2, ω3) = IBCA(ω2, ω3, ω1)e
βω1 = ICAB(ω3, ω1, ω2)e
−βω3 (3.9)
and for the given operators Â, B̂, and Ĉ there are only two nonidentical spectral densities, e.g.
IABC(ω1, ω2, ω3) and ICBA(ω3, ω2, ω1).
Now we introduce three-time temperature Green’s function
Kc(τ1, τ2, τ3) = 〈T Â(τ1)B̂(τ2)Ĉ(τ3)〉,
Kc(τ1, τ2, τ3) = Kc(τ1 − τ, τ2 − τ, τ3 − τ). (3.10)
Due to the imaginary time ordering its Fourier transform contains 3! = 6 terms which can be
collected into two groups of three terms connected by the cyclic permutations
Kc(iν1, iν2, iν3) =
1
β
β∫
0
dτ1
β∫
0
dτ2
β∫
0
dτ3e
(iν1τ1+iν2τ2+iν3τ3)Kc(τ1, τ2, τ3)
=
1
Z
∑
jlf
[
AjlBlfCfjP(j, iν1, l, iν2, f, iν3) + CjfBflAljP(j, iν3, f, iν2, l, iν1)
]
, (3.11)
451
A.M.Shvaika
where
P(j, iν1, l, iν2, f, iν3)
=
1
β
[
e−βεj
β∫
0
dτ1
τ1∫
0
dτ2
τ2∫
0
dτ3 + e−βεl
β∫
0
dτ2
τ2∫
0
dτ3
τ3∫
0
dτ1 + e−βεf
β∫
0
dτ3
τ3∫
0
dτ1
τ3∫
0
dτ2
]
× exp[(εjl + iν1)τ1 + (εlf + iν2)τ2 + (εfj + iν3)τ3]. (3.12)
In the general case, when all Matsubara frequencies are nonzero or when there are no eigenstates
with the same energy value, function (3.12) is equal to
P̃(j, iν1, l, iν2, f, iν3) = ∆(iν1 + iν2 + iν3)
×
[
e−βεj
(εlj − iν1)(εfj + iν3)
+
e−βεl
(εfl − iν2)(εjl + iν1)
+
e−βεf
(εif − iν3)(εlf + iν2)
]
. (3.13)
Besides, we must consider several special cases, when we have levels with the same energy value:
case εj = εl 6= εf and iν1 = −iν2 − iν3 = 0, when
P(j, 0, l, iν2, f,−iν2) = ∆(iν2 + iν3)
[
βe−βεl
εfl − iν2
+
e−βεf − e−βεl
(εfl − iν2)2
]
, (3.14)
case εl = εf 6= εj and iν2 = −iν3 − iν1 = 0, when
P(j,−iν3, l, 0, f, iν3) = ∆(iν3 + iν1)
[
βe−βεf
εjf − iν3
+
e−βεj − e−βεf
(εjf − iν3)2
]
, (3.15)
case εf = εj 6= εl and iν3 = −iν1 − iν2 = 0, when
P(j, iν1, l,−iν1, f, 0) = ∆(iν1 + iν2)
[
βe−βεj
εlj − iν1
+
e−βεl − e−βεj
(εlj − iν1)2
]
, (3.16)
and the case εj = εl = εf and iν1 = iν2 = iν3 = 0, when
P(j, 0, l, 0, f, 0) =
β2
2
e−βεj . (3.17)
The second term in the r.h.s. of equation (3.14) can be derived from equation (3.13) by the analytic
continuation of the Matsubara frequencies to the complex one iν1 → z1 and iν3 → −iν2−z1 followed
by the limit z1 → 0, but the first one cannot be derived from equation (3.13) by manipulating
by frequencies only and corresponds to the additional non-ergodic or conserving contribution,
which originates from the presence of the states with the same energies, and appears only at zero
frequency. Such non-ergodic contributions can be derived from equation (3.13) by
[
lim
εjl→0
lim
z1→0
− lim
z1→0
lim
εjl→0
]
P̃(j, z1, l, z2, f,−z1 − z2) =
βe−βεl
εfl − z2
, (3.18)
but such derivation involves manipulations with the many-body quantum states energies, that
cannot be, in general, reproduced by the quantum statistics many-body methods. A similar analysis
can be done for equations (3.15) and (3.16) and, after analytic continuation from the imaginary
axis to the complex plane iνi → zi using a constraint
∑
i
zi = 0, (3.19)
452
On the spectral relations for multitime correlation functions
equation (3.12) can be rewritten as
P(j, z1, l, z2, f, z3) = ∆(z1 + z2 + z3)
[
β2
2
∆(z1)∆(z2)∆εj ,εl,εf
e−βεj
+ β∆(z1)∆εj ,εl
e−βεl
εfl − z2
+ β∆(z2)∆εl,εf
e−βεf
εjf − z3
+ β∆(z3)∆εf ,εj
e−βεj
εlj − z1
+
e−βεj
(εlj − z1)(εfj + z3)
+
e−βεl
(εfl − z2)(εjl + z1)
+
e−βεf
(εif − z3)(εlf + z2)
]
, (3.20)
where
∆εj ,...,εf
=
{
1, εj = . . . = εf
0, other case
. (3.21)
Now, after substitution of equation (3.20) in equation (3.11), we get the following representation
for the analytically continued three-time temperature Green’s function
Kc(z1, z2, z3) =
β2
2
∆(z1)∆(z2)∆(z3)K̃c(◦, ◦, ◦) + β∆(z1)∆(z2 + z3)K̃c(◦, z2, z3)
+ β∆(z2)∆(z3 + z1)K̃c(z1, ◦, z3) + β∆(z3)∆(z1 + z2)K̃c(z1, z2, ◦)
+ ∆(z1 + z2 + z3)K̃c(z1, z2, z3). (3.22)
It includes five contributions which always can be distinguished by the different ∆ factors. The
first contribution is expressed directly by the spectral densities of the (3.8) type
K̃c(◦, ◦, ◦) = ĨABC(◦, ◦, ◦) + ĨCBA(◦, ◦, ◦), (3.23)
the next three contributions are expressed in terms of the spectral densities of the (3.5)–(3.8) type
K̃c(◦, z2,−z2) =
+∞∫
−∞
dx2
ĨABC(◦, x2,−x2) − ĨCBA(−x2, x2, ◦)
x2 − z2
−
1
z2
[
ĨABC(◦, ◦, ◦) − ĨCBA(◦, ◦, ◦)
]
,
(3.24)
K̃c(−z3, ◦, z3) =
+∞∫
−∞
dx3
ĨABC(−x3, ◦, x3)e
βx3 − ĨCBA(x3, ◦,−x3)e
−βx3
x3 − z3
+
1
z3
[
ĨABC(◦, ◦, ◦) − ĨCBA(◦, ◦, ◦)
]
, (3.25)
and
K̃c(z1,−z1, ◦) =
+∞∫
−∞
dx1
ĨABC(x1,−x1, ◦) − ĨCBA(◦,−x1, x1)
x1 − z1
−
1
z1
[
ĨABC(◦, ◦, ◦) − ĨCBA(◦, ◦, ◦)
]
,
(3.26)
453
A.M.Shvaika
and the last contribution is expressed in terms of the spectral densities of the (3.4)–(3.7) type
K̃c(z1, z2, z3) =
+∞∫
−∞
dx2
ĨABC(◦, x2,−x2)(1 − e−βx2) + ĨCBA(−x2, x2, ◦)(1 − eβx2)
(z2 − x2)(z3 + x2)
+
+∞∫
−∞
dx3
ĨABC(−x3, ◦, x3)(e
βx3 − 1) + ĨCBA(x3, ◦,−x3)(e
−βx3 − 1)
(z3 − x3)(z1 + x3)
+
+∞∫
−∞
dx1
ĨABC(x1,−x1, ◦)(1 − e−βx1) + ĨCBA(◦,−x1, x1)(1 − eβx1)
(z1 − x1)(z2 + x1)
−
+∞∫
−∞
dx3
+∞∫
−∞
dx1
ĨABC(x1,−x3 − x1, x3) + ĨCBA(x3,−x3 − x1, x1)
(x3 − z3)(x1 − z1)
−
+∞∫
−∞
dx1
+∞∫
−∞
dx2
ĨABC(x1, x2,−x1 − x2)e
−βx1 + ĨCBA(−x1 − x2, x2, x1)e
βx1
(x1 − z1)(x2 − z2)
−
+∞∫
−∞
dx2
+∞∫
−∞
dx3
ĨABC(−x2 − x3, x2, x3)e
βx3 + ĨCBA(x3, x2,−x1 − x2)e
−βx3
(x2 − z2)(x3 − z3)
.
(3.27)
Here, we have used the cyclic permutation identities (3.9) according to which there are only two
nonidentical three-time correlation functions, e.g. IABC(ω1, ω2, ω3) and ICBA(ω3, ω2, ω1). Equati-
ons (3.22)–(3.27) give a complete representation of the three-time temperature Green functions in
terms of the spectral densities.
Now we pass to the solution of the reverse problem – finding the spectral densities from the
known multitime temperature Green functions. According to equations (3.22)–(3.27) each of five
contributions in the three-time Green’s function (3.22) has different set of branch cuts, which
permits to extract all ten spectral densities that enter.
First of all we perform an analytic continuation of equation (3.24) (z2 → ω2 ± iδ, z3 = −z2,
z1 = 0):
K̃c(◦, z2,−z2)
∣∣∣∣
2
= −K̃c(◦,−z3, z3)
∣∣∣∣
3
= δ(ω2)K0(◦, ◦, ◦) + K1(◦, ω2,−ω2), (3.28)
where
K0(◦, ◦, ◦) = ĨABC(◦, ◦, ◦) − ĨCBA(◦, ◦, ◦), (3.29)
K1(◦, ω2,−ω2) = ĨABC(◦, ω2,−ω2) − ĨCBA(−ω2, ω2, ◦). (3.30)
Next, we perform an analytic continuation of equation (3.25) (z3 → ω3 ± iδ, z1 = −z3, z2 = 0)
K̃c(−z3, ◦, z3)
∣∣∣∣
3
= −K̃c(z1, ◦,−z1)
∣∣∣∣
1
= −δ(ω3)K0(◦, ◦, ◦) + K2(−ω3, ◦, ω3), (3.31)
K2(−ω3, ◦, ω3) = ĨABC(−ω3, ◦, ω3)e
βω3 − ĨCBA(ω3, ◦,−ω3)e
−βω3 , (3.32)
and of equation (3.26) (z1 → ω1 ± iδ, z2 = −z1, z3 = 0)
K̃c(z1,−z1, ◦)
∣∣∣∣
1
= −K̃c(−z2, z2, ◦)
∣∣∣∣
2
= δ(ω1)K0(◦, ◦, ◦) + K3(ω1,−ω1, ◦), (3.33)
K3(ω1,−ω1, ◦) = ĨABC(ω1,−ω1, ◦) − ĨCBA(◦,−ω1, ω1). (3.34)
One can see, that in equations (3.28), (3.31), and (3.33) all factors at δ-functions are the same.
454
On the spectral relations for multitime correlation functions
The next step is more complicated and requires a two-stage procedure. First of all we perform
an analytic continuation of equation (3.27) over the first frequency z1 → ω1 ± iδ (z3 = −ω1 − z2)
K̃c(z1, z2, z3)
∣∣∣∣
1
=
1
z2
[
ĨABC(ω1, ◦,−ω1)(e
−βω1 − 1) + ĨCBA(−ω1, ◦, ω1)(e
βω1 − 1)
]
+
1
z2 + ω1
[
ĨABC(ω1,−ω1, ◦)(e
−βω1 − 1) + ĨCBA(◦,−ω1, ω1)(e
βω1 − 1)
]
+
+∞∫
−∞
dx2
ĨABC(ω1, x2,−ω1 − x2)(e
−βω1 − 1) + ĨCBA(−ω1 − x2, x2, ω1)(e
βω1 − 1)
z2 − x2
(3.35)
and then an analytic continuation over the second one z2 → ω2 ± iδ (z3 → −ω1 − ω2 ∓ iδ)
K̃c(z1, z2, z3)
∣∣∣∣
1
∣∣∣∣
2
= −K̃c(z1, z2, z3)
∣∣∣∣
1
∣∣∣∣
3
= δ(ω2)K
(2)
1,2(−ω3, ◦, ω3) + δ(ω3)K
(3)
1,2(ω1,−ω1, ◦) + K1,2(ω1, ω2, ω3), (3.36)
where
K
(2)
1,2(−ω3, ◦, ω3) = −ĨABC(−ω3, ◦, ω3)(e
βω3 − 1) − ĨCBA(ω3, ◦,−ω3)(e
−βω3 − 1), (3.37)
K
(3)
1,2(ω1,−ω1, ◦) = −ĨABC(ω1,−ω1, ◦)(e
−βω1 − 1) − ĨCBA(◦,−ω1, ω1)(e
βω1 − 1), (3.38)
K1,2(ω1, ω2, ω3) = −ĨABC(ω1, ω2, ω3)(e
−βω1 − 1) − ĨCBA(ω3, ω2, ω1)(e
βω1 − 1). (3.39)
We can perform another sequence of the analytic continuations: z2 → ω2 ± iδ (z1 = −ω2 − z3) and
z3 → ω3 ± iδ (z1 → −ω2 − ω3 ∓ iδ), that gives a different set of relations
K̃c(z1, z2, z3)
∣∣∣∣
2
∣∣∣∣
3
= −K̃c(z1, z2, z3)
∣∣∣∣
2
∣∣∣∣
1
= δ(ω3)K
(3)
2,3(ω1,−ω1, ◦) + δ(ω1)K
(1)
2,3(◦, ω2,−ω2) + K2,3(ω1, ω2, ω3), (3.40)
where
K
(3)
2,3(ω1,−ω1, ◦) = −ĨABC(ω1,−ω1, ◦)(1 − e−βω1) − ĨCBA(◦,−ω1, ω1)(1 − eβω1), (3.41)
K
(1)
2,3(◦, ω2,−ω2) = −ĨABC(◦, ω2,−ω2)(e
−βω2 − 1) − ĨCBA(−ω2, ω2, ◦)(e
βω2 − 1), (3.42)
K2,3(ω1, ω2, ω3) = −ĨABC(ω1, ω2, ω3)(e
βω3 − e−βω1) − ĨCBA(ω3, ω2, ω1)(e
−βω3 − eβω1). (3.43)
One can see that
K̃c(z1, z2, z3)
∣∣∣∣
1
∣∣∣∣
2
6= K̃c(z1, z2, z3)
∣∣∣∣
2
∣∣∣∣
1
, (3.44)
but there are common elements in final expressions, e.g.
K
(3)
1,2(ω1,−ω1, ◦) + K
(3)
2,3(ω1,−ω1, ◦) = 0, (3.45)
and the following Jacobi type identity is fullfilled
K̃c(z1, z2, z3)
∣∣∣∣
1
∣∣∣∣
2
+ K̃c(z1, z2, z3)
∣∣∣∣
2
∣∣∣∣
3
+ K̃c(z1, z2, z3)
∣∣∣∣
3
∣∣∣∣
1
= 0. (3.46)
Due to this identity the procedure is unambiguous and the resulting set of equations for the spectral
densities is not overdetermined.
In general, the three-time temperature Green’s functions (3.22), as well as multitime Green
functions of higher order, have very complicated analytic properties as a function of the complex
455
A.M.Shvaika
frequencies zi, but they can be separated into contributions with different ∆-factors and different
frequency dependences. Analytic properties of these contributions can be also complicated. Never-
theless, we can always derive a complete set of equations for the multitime spectral densities from
the multitime temperature Green functions by different sequences of the analytic continuations
zi → ωi ± iδ accompanied by the constraint (3.19).
Finally, we find from equations (3.23) and (3.29):
ĨABC(◦, ◦, ◦) =
1
2
[
K̃c(◦, ◦, ◦) + K0(◦, ◦, ◦)
]
, ĨCBA(◦, ◦, ◦) =
1
2
[
K̃c(◦, ◦, ◦) − K0(◦, ◦, ◦)
]
,
(3.47)
from equations (3.30) and (3.42):
ĨABC(◦, ω2,−ω2) =
K1(◦, ω2,−ω2)
1 − e−βω2
+
K
(1)
2,3(◦, ω2,−ω2)e
−βω2
(1 − e−βω2)2
,
ĨCBA(−ω2, ω2, ◦) =
K1(◦, ω2,−ω2)
eβω2 − 1
+
K
(1)
2,3(◦, ω2,−ω2)e
βω2
(eβω2 − 1)2
, (3.48)
from equations (3.32) and (3.37):
ĨABC(−ω3, ◦, ω3) =
K2(−ω3, ◦, ω3)
eβω3 − 1
+
K
(2)
1,2(−ω3, ◦, ω3)
(eβω3 − 1)2
,
ĨCBA(ω3, ◦,−ω3) =
K2(−ω3, ◦, ω3)
1 − e−βω3
+
K
(2)
1,2(−ω3, ◦, ω3)
(1 − e−βω3)2
, (3.49)
from equations (3.34) and (3.38) or (3.41):
ĨABC(ω1,−ω1, ◦) =
K3(ω1,−ω1, ◦)
1 − e−βω1
−
K
(3)
1,2(ω1,−ω1, ◦)e
−βω1
(1 − e−βω1)2
,
ĨCBA(◦,−ω1, ω1) =
K3(ω1,−ω1, ◦)
eβω1 − 1
−
K
(3)
1,2(ω1,−ω1, ◦)e
βω1
(eβω1 − 1)2
, (3.50)
and from equations (3.39) and (3.43):
ĨABC(ω1, ω2, ω3) =
K2,3(ω1, ω2, ω3)
(eβω2 − 1)(eβω3 − 1)
−
K1,2(ω1, ω2, ω3)
(eβω3 − 1)(1 − e−βω1)
,
ĨCBA(ω3, ω2, ω1) =
K2,3(ω1, ω2, ω3)
(1 − e−βω2)(1 − e−βω3)
−
K1,2(ω1, ω2, ω3)
(1 − e−βω3)(eβω1 − 1)
, (3.51)
that complete our main task and find spectral densities for multitime correlation functions from
the known multitime temperature Green functions.
4. Summary
In conclusion, we have presented a general approach to the derivation of the spectral rela-
tions for the multitime correlation functions. An analysis of the frequency dependences of their
spectral densities is performed with special attention paid to the consideration of the non-ergodic
(conserving) contributions. It is shown that such contributions can be treated in a rigorous way
using multitime temperature Green functions: representation of the Green functions in terms of
the spectral densities and solution of the reverse problem, i.e., finding the spectral densities from
the known Green functions are given for the case of the three-time bosonic correlation functions.
Generalization for the case of the higher-order multitime correlation functions and for the
functions constructed from the fermionic operators can be done in the same way, but this was not
456
On the spectral relations for multitime correlation functions
considered here. Here we can only note that for the higher-order functions, besides non-ergodic
terms, which appear at zero value of one frequency and are connected with the conserving of
one operator, the one connected with the conserving of products of operators, which appear at
zero value of the sum of corresponding frequencies, always exist and they will be the only “non-
ergodic” contributions for the pure fermionic correlation functions resulting from the presence
of the matrix elements like 〈f |c†|l〉〈l|c|f〉. Moreover, for some models, the fermionic correlation
and Green functions will contain only such “non-ergodic” contributions, e.g. local four-time two-
electron Green’s function for the Falicov-Kimball model [32] for which only contributions with zero
sum of two frequencies exist.
This publication is based on work supported by Award No. UKP2–2697–LV–06 of the U.S.
Civilian Research & Development Foundation (CRDF). I am grateful to Professor I.V. Stasyuk for
useful and stimulating discussions.
References
1. Kubo R., J. Phys. Soc. Japan, 1957, 12, 570.
2. Bogolyubov N.N., Tyablikov S.V., Dokl. Acad. Nauk SSSR, 1959, 1, 53 [Soviet Phys. – Doklady, 1959,
4, 589].
3. Zubarev D.N., Usp. Fiz. Nauk, 1960, 71, 71 [Soviet Phys. – Uspekhi, 1960, 3, 320].
4. Bonch-Bruevich V.L., Tyablikov S.V. Metod Funktsiy Grina v Statisticheskoy Mekhanike, Moscow,
Fizmatgiz, 1961 [The Green Function Method in Statistical Mechanics, Amsterdam, Noth-Holland
Publishing Company, 1962].
5. Stevens K.W.H., Toombs G.A., Proc. Phys. Soc. London, 1965, 85, 1307.
6. Suzuki M., Prog. Theor. Phys., 1970, 43, 882.
7. Suzuki M., Physica, 1971, 51, 277.
8. Wilcox R.M., Phys. Rev., 1968, 174, 624.
9. Fernandez J.F., Gersh H.A., Proc. Phys. Soc. London, 1967, 91, 505.
10. Callen H., Swendsen R.H., Tahir-Kheli R., Phys. Lett. A, 1967, 25, 505.
11. Lucas G.L., Horwitz G., J. Phys. A: General Phys., 1969, 2, 503.
12. Morita T., Katsura S., J. Phys. C: Solid State Phys., 1969, 2, 1030.
13. Kwok P.C., Schultz T.D., J. Phys. C: Solid State Phys., 1969, 2, 1196.
14. Ramos J.G., Gomes A.A., Nuovo Cimento A, 1971, 3, 441.
15. Huber D.L., Physica A, 1977, 87, 199.
16. Aksenov V.L., Konvent H., Schreiber J., phys. status solidi (b), 1978, 88, K43.
17. Aksenov V.L., Schreiber J., Phys. Lett. A, 1978, 69, 56.
18. Aksenov V.L., Bobeth M., Plakida N.M., Schreiber J., J. Phys. C: Solid State Phys., 1987, 20, 375.
19. Sarry M.F., Usp. Fiz. Nauk, 1991, 161, 47 [Soviet Phys. – Uspekhi, 1991, 34, 958].
20. Fröbrich P., Kuntz P.J., Phys. Rev. B, 2003, 68, 014410.
21. Mancini F., Avella A., Eur. Phys. J. B, 2003, 36, 37.
22. Mancini F., Avella A., Adv. Phys., 2004, 53, 537.
23. Matsubara T., Prog. Theor. Phys., 1955, 14, 351.
24. Abrikosov A.A., Gorkov L.P., Dzyaloshinski I.E., Metody kvantovoy teorii polya v statisticheskoy
fizike, Moscow, Fizmatgiz, 1962 [Methods of Quantum Field Theory in Statistical Physics, New York,
Dover Publications Inc., 1975].
25. Izyumov Yu.A., Kasan-Ogly F.A., Skryabin Yu.N., Polevye metody v teorii ferromagnetizma [Field
Methods in the Theory of Ferromagnetism], Moscow, Nauka, 1974.
26. Baryakhtar V.G., Krivoruchko V.V., Yablonskii D.A., Funktsii Grina v teorii magnetizma [Green
Functions in the Theory of Magnetism], Kyiv, Naukova Dumka, 1984.
27. Izyumov Yu.A., Skryabin Yu.N. Statisticheskaya mekhanika magnitouporyadochennykh sistem.
Moskow, Nauka, 1987 [Statistical Mechanics of Magnetically Ordered Systems, New York, Consul-
tants Bureau, 1989].
28. Stasyuk I.V., Shvaika A.M., Condens. Matter Phys., 1994, 3, 134.
29. Falicov L.M., Kimball J.C., Phys. Rev. Lett., 1969, 22, 997.
30. Freericks J.K., Zlatić V., Rev. Mod. Phys., 2003, 75, 1333.
31. Shvaika A.M., Physica C, 2000, 341–348, 177.
32. Shvaika A.M., J. Phys. Studies, 2001, 5, 349.
33. Tyablikov S.V., Pu Fu-Cho, Fiz. Tverd. Tela, 1961, 3, 142 [Soviet Phys. – Solid State, 1961, 3, 102].
457
A.M.Shvaika
34. Tanaka T., Moorjani K., Morita T., Phys. Rev., 1967, 155, 388.
35. Harper C., Phys. Rev. B, 1972, 5, 1613.
36. Shvets V.T., Teor. Mat. Fiz., 1996, 106, 438 [Theor. Math. Phys., 1996, 106, 359].
37. Shvaika A.M., Vorobyov O., Freericks J.K., Devereaux T.P., Phys. Rev. Lett., 2004, 93, 137402.
38. Shvaika A.M., Vorobyov O., Freericks J.K., Devereaux T.P., Phys. Rev. B., 2005, 71, 045120.
39. Bonch-Bruevich V.L., Doklady Akad. Nauk SSSR, 1959, 129, 529 [Soviet Phys. – Doklady, 1959, 4,
1275].
Про спектральнi спiввiдношення для багаточасових
кореляцiйних функцiй
А.М.Швайка
Iнститут фiзики конденсованих систем НАН України, вул. Свєнцiцького, 1, 79011 Львiв
Отримано 17 квiтня 2006 р.
Запропоновано загальний пiдхiд до отримання спектральних спiввiдношень для багаточасових ко-
реляцiйних функцiй. Особлива увага звертається на розгляд неергодичних (збережних) внескiв i
показано, що такi внески можна послiдовно отримати використовуючи багаточасовi температурнi
функцiї Ґрiна. Для випадку тричасових кореляцiйних функцiй знайдено представлення багаточасо-
вих функцiй Ґрiна через спектральнi густини i розв’язано обернену задачу – вираження спектраль-
них густин через вiдомi функцiї Ґрiна.
Ключовi слова: багаточасовi кореляцiйнi функцiї, функцiї Ґрiна, спектральнi спiввiдношення,
неергодичнiсть
PACS: 05.30.-d
458
|