Ergodicity in strongly correlated systems
We present a concise and systematic review of the ergodicity issue in strongly correlated systems. After giving a brief historical overview, we analyze the issue within the Green’s function formalism by means of the equations of motion approach. By means of this analysis, we are able to identify t...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2006
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/121374 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Ergodicity in strongly correlated systems / A. Avella, F. Mancini, E. Plekhanov // Condensed Matter Physics. — 2006. — Т. 9, № 3(47). — С. 485–497. — Бібліогр.: 19 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We present a concise and systematic review of the ergodicity issue in strongly correlated systems. After
giving a brief historical overview, we analyze the issue within the Green’s function formalism by means of
the equations of motion approach. By means of this analysis, we are able to identify the primary source of
non-ergodic dynamics for a generic operator as well as to give a recipe for computing unknown quantities
characterizing such a behavior within the Composite Operator Method. Finally, we present examples of nontrivial
strongly correlated systems where it is possible to find a non-ergodic behavior. |
---|