Structure and collective dynamics of liquid sodium
The temperature variation of the longitudinal and transverse phonon frequencies of liquid sodium is investigated using the approach by Hubbard Beeby. The molecular dynamics simulation is used to generate the pair correlation function of liquid sodium at various temperatures viz. T = 378 K, 473 K,...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2006
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/121448 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Structure and collective dynamics of liquid sodium / V.N. Patel, P.B. Thakor, B.Y. Thakore, P.N. Gajjar, A.R. Jani // Condensed Matter Physics. — 2006. — Т. 9, № 4(48). — С. 741–746. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-121448 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1214482017-06-15T03:04:44Z Structure and collective dynamics of liquid sodium Patel, V.N. Thakor, P.B. Thakore, B.Y. Gajjar, P.N. Jani, A.R. The temperature variation of the longitudinal and transverse phonon frequencies of liquid sodium is investigated using the approach by Hubbard Beeby. The molecular dynamics simulation is used to generate the pair correlation function of liquid sodium at various temperatures viz. T = 378 K, 473 K, 573 K, and 723 K, with 672 particles. To describe the electron-ion interaction our own model potential is employed along with a recent local field correction function due to Sarkar et al. To evaluate the parameter of the potential the zero pressure condition has been applied. The present results of g(r) are in good agreement with available experimental findings. The computed g(r) are used to investigate the temperature variation of the collective dynamics of liquid sodium. The amplitudes of the peaks of the longitudinal and transverse frequencies are suppressed while the width of the propagation gap for the transverse sound waves decreases with an increase in temperature. The computed longitudinal and transverse sound velocities at these temperatures are found to be encouraging. За допомогою методу Габбарда-Бiбi дослiджувалась температурна залежнiсть повздовжньої та поперечної фононних частот рiдкого натрiю. Парна кореляцiйна функцiя рiдкого натрiю була запропонована при рiзних температурах, а саме T = 378 K, 473 K, 573 K та 723 K, застосовуючи метод молекулярної динамiки для 672 частинок. Опис електрон-iонної взаємодiї здiйснювався за допомогою запропонованого авторами модельного потенцiалу, доповненого функцiєю Серкара та iн., що описує поправку на локальне поле. Щоб оцiнити параметр потенцiалу, була застосована умова нульового тиску. Отриманi результати для g(r) добре узгоджуються з експериментальними даними. На основi обчисленої g(r) вивчалась температурна залежнiсть колективної динамiки рiдкого натрiю. Показано, що з пiдвищенням температури амплiтуди максимумiв повздовжньої i поперечної частот понижуються, а ширина пропагаторної щiлини для поперечних акустичних хвиль звужується. 2006 Article Structure and collective dynamics of liquid sodium / V.N. Patel, P.B. Thakor, B.Y. Thakore, P.N. Gajjar, A.R. Jani // Condensed Matter Physics. — 2006. — Т. 9, № 4(48). — С. 741–746. — Бібліогр.: 22 назв. — англ. 1607-324X PACS: 71.15H, 61.25M, 63.20D, 71.15Q DOI:10.5488/CMP.9.4.741 http://dspace.nbuv.gov.ua/handle/123456789/121448 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The temperature variation of the longitudinal and transverse phonon frequencies of liquid sodium is investigated
using the approach by Hubbard Beeby. The molecular dynamics simulation is used to generate the pair
correlation function of liquid sodium at various temperatures viz. T = 378 K, 473 K, 573 K, and 723 K, with
672 particles. To describe the electron-ion interaction our own model potential is employed along with a recent
local field correction function due to Sarkar et al. To evaluate the parameter of the potential the zero pressure
condition has been applied. The present results of g(r) are in good agreement with available experimental
findings. The computed g(r) are used to investigate the temperature variation of the collective dynamics of
liquid sodium. The amplitudes of the peaks of the longitudinal and transverse frequencies are suppressed
while the width of the propagation gap for the transverse sound waves decreases with an increase in temperature.
The computed longitudinal and transverse sound velocities at these temperatures are found to be
encouraging. |
format |
Article |
author |
Patel, V.N. Thakor, P.B. Thakore, B.Y. Gajjar, P.N. Jani, A.R. |
spellingShingle |
Patel, V.N. Thakor, P.B. Thakore, B.Y. Gajjar, P.N. Jani, A.R. Structure and collective dynamics of liquid sodium Condensed Matter Physics |
author_facet |
Patel, V.N. Thakor, P.B. Thakore, B.Y. Gajjar, P.N. Jani, A.R. |
author_sort |
Patel, V.N. |
title |
Structure and collective dynamics of liquid sodium |
title_short |
Structure and collective dynamics of liquid sodium |
title_full |
Structure and collective dynamics of liquid sodium |
title_fullStr |
Structure and collective dynamics of liquid sodium |
title_full_unstemmed |
Structure and collective dynamics of liquid sodium |
title_sort |
structure and collective dynamics of liquid sodium |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/121448 |
citation_txt |
Structure and collective dynamics of liquid sodium / V.N. Patel, P.B. Thakor, B.Y. Thakore, P.N. Gajjar, A.R. Jani // Condensed Matter Physics. — 2006. — Т. 9, № 4(48). — С. 741–746. — Бібліогр.: 22 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT patelvn structureandcollectivedynamicsofliquidsodium AT thakorpb structureandcollectivedynamicsofliquidsodium AT thakoreby structureandcollectivedynamicsofliquidsodium AT gajjarpn structureandcollectivedynamicsofliquidsodium AT janiar structureandcollectivedynamicsofliquidsodium |
first_indexed |
2025-07-08T19:55:14Z |
last_indexed |
2025-07-08T19:55:14Z |
_version_ |
1837109888464977920 |
fulltext |
Condensed Matter Physics 2006, Vol. 9, No 4(48), pp. 741–746
Structure and collective dynamics of liquid sodium
V.N.Patel, P.B.Thakor, B.Y.Thakore, P.N.Gajjar, A.R.Jani
Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat, India
Received February 7, 2006, in final form July 3, 2006
The temperature variation of the longitudinal and transverse phonon frequencies of liquid sodium is investi-
gated using the approach by Hubbard Beeby. The molecular dynamics simulation is used to generate the pair
correlation function of liquid sodium at various temperatures viz. T = 378 K, 473 K, 573 K, and 723 K, with
672 particles. To describe the electron-ion interaction our own model potential is employed along with a recent
local field correction function due to Sarkar et al. To evaluate the parameter of the potential the zero pressure
condition has been applied. The present results of g(r) are in good agreement with available experimental
findings. The computed g(r) are used to investigate the temperature variation of the collective dynamics of
liquid sodium. The amplitudes of the peaks of the longitudinal and transverse frequencies are suppressed
while the width of the propagation gap for the transverse sound waves decreases with an increase in tem-
perature. The computed longitudinal and transverse sound velocities at these temperatures are found to be
encouraging.
Key words: pseudopotential, pair distribution function, collective dynamics, molecular dynamics
PACS: 71.15H, 61.25M, 63.20D, 71.15Q
1. Introduction
A considerable effort has been made over the last four decades to understand the properties
of matter through simulations [1–3]. Alkali metals are generally considered to be the simplest
metals since they possess a single electron in their external shell. Nevertheless, they are still the
objects of great interest [4,5] for different reasons. Their chemical reactivity makes them valuable
for researches. The properties of sodium are of interest due to engineering applications and its
fundamental significance. The pair-correlation functions g(r), contain useful information about the
interparticle radial correlation and structure which in turn decides the electrical, thermodynamical
and other physical properties for crystals, liquids and amorphous materials. Several attempts have
been made by different workers [6–15] to study the pair correlation function for different metals.
In this paper we report a molecular dynamics based study of structure and collective dynamics
sodium for various atomic volumes of 277.61 a3
0 at temperature 378 K, 285.29a3
0 at temperature
473 K, 292.42a3
0 at temperature 573 K and 304.15a3
0 at temperature 723 K. To describe electron-
ion interactions, a model potential is employed consisting of both linear and quadratic type of
interactions within the core [16,17].
We stick to this rather simple model, as it is capable of producing excellent results for other
systems [16,17]. In r-space it has the form:
Vb(r) =
−
ze2
rc
[
3r
2rc
−
r2
2r2
c
]
, r < rc ,
−
ze2
r
, r > rc .
(1.1)
The corresponding bare ion form factor is
V bb(q) = −
4πze2
Ωoq2
[
3 sin qrc
2qrc
−
3
q2r2
c
+
3 sin qrc
q3r3
c
]
. (1.2)
The above form tends to give a very weak effect as r approaches 0 and is also continuous at
r = rc. The parameter of the potential has been obtained by satisfying the zero pressure condition
c© V.N.Patel, P.B.Thakor, B.Y.Thakore, P.N.Gajjar, A.R.Jani 741
V.N.Patel et al.
[16,17]. This method of determining the parameter is independent of any fitting procedure with
the experimentally observed quantities and leads the system to equilibrium with minimum energy.
A more recent and advanced local-field correction function due to Sarkar et. al. [18] is used in
the present study in order to incorporate the exchange and correlation effects. The function is,
f(X) = A
[
1 − (1 + BX4)
]
exp
(
−CX2
)
, (1.3)
where X =
q
kF
. The constants A, B and C are well defined in reference [18].
2. Pair correlation function
Here, using the standard molecular dynamic techniques the pair correlation function, g(r) is
generated [1,2]
g(r) =
1
n
〈
dn(r)
〉
4πr2dr
. (2.1)
In this expression, n is the number density of the system and dn(r) is the number of particles
within the spherical shell of radius r and the thickness dr centered around an arbitrarily chosen
particle averaged over this origin particle. The notation 〈· · · 〉 means a time average. Above each
particle, concentric radial bins are constructed with a chosen small bin width dr, with the provision
that dr is sufficiently small to numerically resolve all the relevant structure in g(r). The number of
neighbor’s dn(r) for each particle is counted in each bin. The time average for an MD equilibrium
state of dn(r) is then taken using the standard normalization factor that makes g(r) tend to unity
as the correlations tend to zero. When calculating g(r), only that MD iteration was included in the
time average where the system remained on the flat portion of the potential energy plateau. These
calculations are done for N = 672 particles and are run for 300 time steps which corresponds
to a time of 150 time units or 1.05 × 10−12 seconds. The system reaches equilibrium after the
first 100 time steps. The equations of motion have been integrated through Verlet’s [2] algorithm.
The particles are placed randomly in the box and Maxwell’s velocity distribution is imposed while
invoking the periodic boundary conditions.
Figure 1. Pair distribution functions g(r) for Na at different temperatures.
The outcome of the presently computed g(r) at different temperatures is shown in figure 1
along with the experimental data [19]. It is observed from the figure 1 that at lower temperatures
the crystal shell peaks are seen to appear, indicating that the particles are still oscillating about
742
Structure and collective dynamics of liquid sodium
their lattice positions. We also note that there is a strong peak in g(r) at the average nearest
neighbour spacing r as would be expected from the fact that g(r) is proportional to the number
of particles in a spherical shell a distance r from a given particle. There are other less pounced
peaks at average next nearest and further neighbour separations. The radial distribution function
depends on density and temperature, and therefore, in computer simulation studies, g(r) serves as
a helpful indicator of the nature of the phase assumed by the simulated system. As the temperature
increases, the less peaking is seen which indicates that the particles have moved from their lattice
positions. At higher temperature the peaking is yet reduced. The molecular dynamic system melts
at higher temperature and the particles have enough velocity to move from their perfect crystal
lattice positions and diffuse through the system.
3. Collective dynamics
Correlation function g(r) obtained by means of MD approach is then used to study the tem-
perature dependency of the longitudinal and transverse phonon frequencies of liquid sodium. The
expressions used in computing the squared bare frequencies of the collective excitations without
damping are [20] as follows:
ω2
1(q) = ω2
E
[
1 −
3 sin(qσ)
qσ
−
6 cos(qσ)
(qσ)2
−
6 sin(qσ)
(qσ)3
]
, (3.1)
ω2
t
(q) = ω2
E
[
1 +
3 cos(qσ)
qσ
−
3 sin(qσ)
(qσ)3
]
, (3.2)
where
ωE =
4πneff
3Meff
∫
∞
0
g(r)r2V ′′
eff(r)dr (3.3)
is the maximum phonon frequency. Here the upper limit of the integration is decided by the length
of the MD derived g(r) used in the computations and is 10 Å in the present calculations. Meff
is the effective atomic mass and neff is the effective number density while V ′′
eff
(r) is the second
derivative of the effective pair potential. In the long wavelength limit the phonon dispersion curves
show an elastic behavior. Hence, the longitudinal νL and transverse νT sound velocities are also
investigated. The isothermal [21] bulk modulus Bt, modulus of rigidity G, Poisson’s ratio σ and
Young’s modulus are found using the expressions given below
BT = ρ
(
v2
1 −
4
3
v2
t
)
, (3.4)
G = ρv2
t
(3.5)
ρ is the isotropic density of the solid.
σ =
1 − 2(v2
t
/v2
1)
2 − 2(v2
t
/v2
1
)
, (3.6)
Y = 2G(σ + 1). (3.7)
The general feature of the transverse branch is the existence of a propagating gap at small q-values
(q < qH). The width of the propagation gap for the transverse sound waves qH corresponds to a
q-range where the viscous behaviour of the liquid is dominant over the elastic behaviour and is
given by
q2
H
≈
ρG
4η2
, (3.8)
where the shear viscosity η is q dependent.
743
V.N.Patel et al.
4. Results and discussions
The effect of increasing the temperature as seen in radial distribution function is that the peaks
become broader as the temperature increases. In particular, the height of the first peak decreases
gradually whereas its width increases on raising the temperature. Thus the two things observed
are the increase in the first peak height and the narrowing of the first peak, which occurs as the
temperature is lowered. The other feature is the evolution of the second peak, which occurs with
the temperature decrease. The amplitude of 2nd peak increases with the temperature decrease.
The results obtained using our own model potential is compared with the experimental values [19]
and they are found to be in good agreement around the first peak as well as produces all the
characteristic features of g(r) for all r. The presently computed g(r) and frequencies reproduce
all the characteristic features of the liquid sodium and confirm the use of our model potential in
explaining the pair distribution function g(r), as well as the frequencies of collective excitations
in liquid sodium. As seen in figure 2 and figure 3 the amplitudes of the peaks of the longitudinal
Figure 2. Longitudinal phonon dispersion
curves for Na at different temperatures.
Figure 3. Transverse phonon dispersion curves
for Na at different temperatures.
Table 1. The longitudinal and transverse sound velocities, isothermal bulk modulus BT, modulus
of rigidity G, Poission’s ratio σ and Young’s modulus and propagation gap of liquid sodium.
Properties T (K)
378 473 573 723
vL × 103 Present 3.776 3.708 3.69 3.583
cm/sec Expt.[21] 2.508 – – –
vT × 103 Present 2.18 2.141 2.13 2.071
cm/sec Expt.[21] 1.814 – – –
BT × 1010 dyne/cm2 Present 7.351 6.897 6.664 6.054
G dyne/cm2 Present 4.41 4.138 3.998 3.632
σ Present 0.25 0.25 0.25 0.25
Y × 1011 dyne/cm2 Present 1.103 1.035 0.999 0.908
qH Å−1 0.459 0.3786 0.3740 0.3667
and transverse frequencies are suppressed and the width of the peaks increases with the increase in
temperature. The position of the peak is also affected due to the change in the temperature. The
744
Structure and collective dynamics of liquid sodium
computed values of longitudinal and transverse sound velocities i.e. vL and vT, isothermal bulk
modulus Bt, modulus of rigidity G, Poission’s ratio σ, Young’s modulus Y and propagation gap
are shown in table 1 and these values are compared with experimental data available for liquid
sodium. It can be seen from table 1 that as the temperature increases the width of the propagation
gap for the transverse sound waves decreases. This shows that with the temperature increase the
dominance of elastic behaviour increases over the viscous behaviour of liquid sodium. Thus, this
potential appears to be a realistic model using which additional theoretical information on the
properties of other liquids can be obtained.
Acknowledgement
The work is supported under DRS/SAP of University Grants Commission, New Delhi, India.
References
1. Haile J.M. Molecular Dynamics Simulation: Elementary methods. John Wiley Sons, Inc.New York,
1992.
2. Rapaport D.C. The Art of Molecular Dynamics Simulation. Cam. Univ. Press. UK, 2001.
3. Balucani U., Zoppi M. Dynamics of the liquid state. Clarendon, Oxford, 1994.
4. Gonzalez L.E., Gonzalez D.J., Hoshino K., J. Phys.: Condens. Matter, 1993, 5, 9261.
5. Matsuda N., Mori H., Hoshino K., Watabe M., J. Phys.: Condens. Matter, 1991, 3, 827.
6. Gonzalez Miranda J.M., Phys. Lett. A, 1985, 108, 35.
7. Silvestrelli P.L., Alavi A., Parrinello M., Phys. Rev. B, 1997, 55, 23.
8. Bickham S.R., Pfaffenzeller O., Collins L.A., Kress J.D., Hohi D., Phys. Rev. B, 1998, 58, 18.
9. Akinlade O., Ijaduola B.R., Vinvent U.E., Adebayo G.A., Pramana Journal of Physics, 1999, 52, 6631.
10. Clents B.E., Wallace D.C., Phys. Rev. E, 1999, 59, 6.
11. Cabral B.J.C., Martins J.L., J. of Mol. Str. (Thermo chem), 1995, 330, 272.
12. Cabral B.J.C., Martins J.L., Phys. Rev. B, 1995, 51, 872.
13. Day R.S., Sun F., Cutler P.H., Phys. Rev. A, 1979, 19, 328.
14. Murphy R.D., Klein M.L., Phys. Rev. A, 1973, 8, 2640.
15. Mountain R.D., Phys. Rev. A, 1982, 26, 2859.
16. Jivani A.R., Trivedi H.J., Gajjar P.N., Jani A.R., Pramanna-Journal of Phys., 2005, 64, 153; Physica B,
2005, 357, 305.
17. Jivani A.R., Gajjar P.N., Jani A.R., Indian Journal. of Pure and Applied Physics, 2004, 42, 833;
Semiconductor Physics, Quantum Electronics and optoelectronics, 2003, 5, 243.
18. Sarkar A., Sen D., Haldar S., Roy D., Mod. Phys. Lett. B, 1998, 12,639.
19. Waseda Y. Structure of Non-crystallineMaterials. McGraw-Hill Pub., Co New York, 1980.
20. Hubbard J., Beeby L., J. Phys. C, 1969, 2, 556.
21. Bryk T., Mryglod I., J. Phys.: Condens. Matter, 2000, 12, 6063.
22. Cocking S.J., Adv. Phys., 1967, 16, 189.
745
V.N.Patel et al.
Структура i колективна динамiка рiдкого натрiю
В.Н.Пейтел, П.Б.Факор, В.Я.Факоре, П.Н.Гейдджар, А.Р.Дженай
Унiверситет iм. Сердара Пейтела, фiзичний факультет Валлабх Вiдянагор-388120, Гуджарат, Iндiя
Отримано 7 лютого 2006 р., в остаточному виглядi – 3 липня 2006 р.
За допомогою методу Габбарда-Бiбi дослiджувалась температурна залежнiсть повздовжньої та по-
перечної фононних частот рiдкого натрiю. Парна кореляцiйна функцiя рiдкого натрiю була запро-
понована при рiзних температурах, а саме T = 378 K, 473 K, 573 K та 723 K, застосовуючи метод
молекулярної динамiки для 672 частинок. Опис електрон-iонної взаємодiї здiйснювався за допомо-
гою запропонованого авторами модельного потенцiалу, доповненого функцiєю Серкара та iн., що
описує поправку на локальне поле. Щоб оцiнити параметр потенцiалу, була застосована умова ну-
льового тиску. Отриманi результати для g(r) добре узгоджуються з експериментальними даними.
На основi обчисленої g(r) вивчалась температурна залежнiсть колективної динамiки рiдкого натрiю.
Показано, що з пiдвищенням температури амплiтуди максимумiв повздовжньої i поперечної частот
понижуються, а ширина пропагаторної щiлини для поперечних акустичних хвиль звужується.
Ключовi слова: псевдопотенцiал, парна функцiя розподiлу, колективна динамiка, молекулярна
динамiка
PACS: 71.15H, 61.25M, 63.20D, 71.15Q
746
|