The charge trapping/emission processes in silicon nanocrystalline nonvolatile memory assisted by electric field and elevated temperatures

In this work, the influence of elevated temperatures on charge trapping in Si nanoclusters located in oxide layer of MOS structure has been comprehensively studied. The samples with one layer of nanocrystals in the oxide have been studied using the modular data acquisition setup for capacitance-volt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Ievtukh, V.A., Ulyanov, V.V., Nazarov, A.N.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2016
Schriftenreihe:Semiconductor Physics Quantum Electronics & Optoelectronics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/121535
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The charge trapping/emission processes in silicon nanocrystalline nonvolatile memory assisted by electric field and elevated temperatures / V.A. Ievtukh, V.V. Ulyanov, A.N. Nazarov // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2016. — Т. 19, № 1. — С. 116-123. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:In this work, the influence of elevated temperatures on charge trapping in Si nanoclusters located in oxide layer of MOS structure has been comprehensively studied. The samples with one layer of nanocrystals in the oxide have been studied using the modular data acquisition setup for capacitance-voltage measurements. The memory window formation and memory window retention experimental methods were used with the aim to study the trapping/emission processes inside the dielectric layer of MOS capacitor memory within the defined range of elevated temperatures. The trap activation energy and charge localization were determined from measured temperature dependences of charge retention. The electric field dependence of the activation energy with subsequent charge emission law have been determined.