Local vibrational density of states in disordered graphene

Local vibrational density of states for disordered graphene has been calculated via Green’s functions method. Disordered material has been modeled with Bethe lattice. Density of states does not include particularities specific for ideal graphene.

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Kardashev, D.L., Kardashev, K.D.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2016
Назва видання:Semiconductor Physics Quantum Electronics & Optoelectronics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121607
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Local vibrational density of states in disordered graphene / D.L. Kardashev, K.D. Kardashev // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2016. — Т. 19, № 3. — С. 315-317. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-121607
record_format dspace
spelling irk-123456789-1216072017-06-15T03:05:54Z Local vibrational density of states in disordered graphene Kardashev, D.L. Kardashev, K.D. Local vibrational density of states for disordered graphene has been calculated via Green’s functions method. Disordered material has been modeled with Bethe lattice. Density of states does not include particularities specific for ideal graphene. 2016 Article Local vibrational density of states in disordered graphene / D.L. Kardashev, K.D. Kardashev // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2016. — Т. 19, № 3. — С. 315-317. — Бібліогр.: 11 назв. — англ. 1560-8034 DOI: 10.15407/spqeo19.03.315 PACS 63.22.Rc t http://dspace.nbuv.gov.ua/handle/123456789/121607 en Semiconductor Physics Quantum Electronics & Optoelectronics Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Local vibrational density of states for disordered graphene has been calculated via Green’s functions method. Disordered material has been modeled with Bethe lattice. Density of states does not include particularities specific for ideal graphene.
format Article
author Kardashev, D.L.
Kardashev, K.D.
spellingShingle Kardashev, D.L.
Kardashev, K.D.
Local vibrational density of states in disordered graphene
Semiconductor Physics Quantum Electronics & Optoelectronics
author_facet Kardashev, D.L.
Kardashev, K.D.
author_sort Kardashev, D.L.
title Local vibrational density of states in disordered graphene
title_short Local vibrational density of states in disordered graphene
title_full Local vibrational density of states in disordered graphene
title_fullStr Local vibrational density of states in disordered graphene
title_full_unstemmed Local vibrational density of states in disordered graphene
title_sort local vibrational density of states in disordered graphene
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/121607
citation_txt Local vibrational density of states in disordered graphene / D.L. Kardashev, K.D. Kardashev // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2016. — Т. 19, № 3. — С. 315-317. — Бібліогр.: 11 назв. — англ.
series Semiconductor Physics Quantum Electronics & Optoelectronics
work_keys_str_mv AT kardashevdl localvibrationaldensityofstatesindisorderedgraphene
AT kardashevkd localvibrationaldensityofstatesindisorderedgraphene
first_indexed 2025-07-08T20:12:48Z
last_indexed 2025-07-08T20:12:48Z
_version_ 1837110991769305088
fulltext Semiconductor Physics, Quantum Electronics & Optoelectronics, 2016. V. 19, N 3. P. 315-317. doi: 10.15407/spqeo19.03.315 © 2016, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 315 PACS 63.22.Rc t Local vibrational density of states in disordered graphene D.L. Kardashev1, K.D. Kardashev2 1 National University “Odessa Maritime Academy” 8, Didrikhson str., 65029 Odessa, Ukraine; e-mail: dlkardashev@ukr.net 2A.S. Popov Odessa National Academy of Telecommunication 1, Kuznechnaya str., 65029 Odessa, Ukraine; e-mail: konstantinkardashev@gmail.com Abstract. Local vibrational density of states for disordered graphene has been calculated via Green’s functions method. Disordered material has been modeled with Bethe lattice. Density of states does not include particularities specific for ideal graphene. Keywords: Bethe lattice, Green function, local vibrational density of states. Manuscript received 06.04.16; revised version received 14.07.16; accepted for publication 13.09.16; published online 04.10.16. 1. Introduction The Green functions (GF) method has been successfully applied for investigation of electronic [1, 2] and dynamic [3, 4] properties of disordered solids [5, 6]. It is impossible to use cyclic boundary conditions in these materials. In a real graphene, there are always some variations of chemical bounds lengths and valence angles magnitudes [5]. The most simple model of structurally disordered graphene is the Bethe lattice [7-9] (Cayley tree). It is an infinite connected cycle-free dendritic system of atoms with remaining short-range order. We’ve used lattice potential model in Born’s approximation ( )[ ] ( ) ( )[ ] , 4 1 )( 4 1)( 2 1)( 22 , 2 ∑∑ ∑ ×−γ+−× ×β−α+⋅−β= ij jiji ij iji ji jiji ruuuu iruurV rrrrr rrrr The sums are on atoms i and its nearest neighbors j, and rj(i) is the unit vector joining they equilibrium positions; ui and uj – vectors of displacement of these atoms. In order to determine GF, it is necessary to solve infinite sequence of Dyson’s linear matrix equations: ( ) ∑ νν νν νν+=−ω ji ji n ijijijijm K K K GDIGDI 10 2 . Here, the sums are on all possible paths joining i-th and j-th atoms, Dij – matrices of force constants. The local density of states is given by ∑ ω ⋅π⋅ ⋅ω⋅ −= k kkG n mEg )(Im 3 2)( , where n is a number of atoms in a system, and Gii (ω) – diagonal matrix element of Green’s function for i-th degree of freedom. Each summand is a partial density of vibrational states, which characterize contribution of a given degree of freedom with a frequency ω in the total density of states. Semiconductor Physics, Quantum Electronics & Optoelectronics, 2016. V. 19, N 3. P. 315-317. doi: 10.15407/spqeo19.03.315 © 2016, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 316 2. Solution for the Bethe lattice In order to transform graphene into the Bethe lattice, we use the following technique: any random atom we choose as initial and mark him with subscript 0; next nearest neighbors will have indexes 1, 2, etc. To investigate dynamics of this lattice, we postulate that each bond with a nearest neighbor can be characterized via 3×3 symmetric matrices of force constants Dij: ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ γ αβ βα = 00 0 0 01D ; ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ γ β⋅ +α β − β − β⋅ −α = 00 0 2 3 2 0 22 3 02D ; ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ γ β⋅ −α β − β − β⋅ +α = 00 0 2 3 2 0 22 3 03D . Then, the local GF of 0-th atom can be determined from an infinite sequence of matrix equations [1, 2]: ( ) ( ) ( ) ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⋅ ⋅ ⋅ +=−ω +=−ω +=−ω ∑ ∑ ∑ ≠ ≠ ≠ 2 22112 2 1 11 2 0 2 j i j j m m m jjii0 jj000i0i0 0j0j000 GDGDGDI GDGDGDI GDIGDI Here, m is the mass of an atom, I – identity matrix, ∑ = ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ γ α α == 3 1 300 030 003 i 0i0 DD – force constants matrix joining atom with itself. This system of equations can be solved, if one introduces the transfer matrices Фji in the form: ⎪ ⎪ ⎪ ⎩ ⎪⎪ ⎪ ⎨ ⎧ ⋅ ⋅ ⋅ = = 0ii1i 00i0i GΦG GΦG 1 0 , Figure. Local density of vibrational states of graphene. Solid line – density of states for the Bethe lattice, dashed line – density of states of ideal graphene [10]. which satisfies equation ( ) ∑ ≠ +=−ω jk m kjikikijij0 ΦΦDDΦDI2 . Then, the Green function is determined as 1 2 − ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ −−ω= ∑ i m 0i0i000 ΦDDIG . Matrix elements were determined in an analytical form (here we does not perform them due to their massiveness). The results of calculation of vibrational density of states for disordered graphene are represented in the figure. The dashed line represents density of states for ideal graphene [10]. Values of force constants have been selected due to the best proximity to X-ray inelastic scattering experimental data [11]. 3. Conclusions Local vibrational density of states describes well ZO, ZA, LO, TO modes. But TA and LA peaks are highly smoothed. In a presence of structural disorder, the expression for local density of states must be averaged over different local configurations. The Bethe lattice can be used in a cluster modeling calculations, including presence of cycles of bonds, as boundary conditions. References 1. S. Viola Kusminskiy, D.K. Campbell, and A.H. Castro Neto, Lenosky’s energy and the phonon dispersion of graphene // Phys. Rev. B, 80, p. 035401-1–035401-5 (2009). Semiconductor Physics, Quantum Electronics & Optoelectronics, 2016. V. 19, N 3. P. 315-317. doi: 10.15407/spqeo19.03.315 © 2016, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 317 2. M. Neek-Amal, Graphene nanoribbons subjected to axial stress // Phys. Rev. B, 82, p. 085432-1– 085432-6 (2010). 3. D. Cheliotis, B. Virág, The spectrum of the random environment and localization of noise // Probab. Theory Relat. Fields, 148, p. 141-158 (2010). 4. Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, Z.X. Shen, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening // ACS Nano, 2, p. 2301-2305 (2008). 5. S.Yu. Davydov, Model of adsorption on amorphous graphene // Semiconductors, 50(3), p. 377-383 (2016). 6. S.Yu. Davydov, On the density of states of disordered epitaxial graphene // Semiconductors, 49(5), p. 615-620 (2015). 7. Koh Wada, Takehiko Fujita, Takashi Asahi, Lattice Vibration of the Cayley Tree // Progr. Theor. Phys. 59, No. 4, p. 1101-1114 (1978). 8. H. Böttger, Principles of the Theory of Lattice Dynamics. Physik-Verlag, 1983. 9. R. Alben, D. Weaire, J.E. Smith, M.H. Brodsky, Vibrational properties of amorphous Si and Ge // Phys. Rev. B, 11, No.6, p. 2271-2295 (1975). 10. V. Adamyan, V. Zavalniuk, Phonons in graphene with defects // J. Phys: Condens. Matter, 24, 015402 (10 p.) (2011). 11. M. Mohr, J. Maultzsch, E. Dobardžić et al., Phonon dispersion of graphite by inelastic X-ray scattering // Phys. Rev. B, 76, 035439 (2007).