Phenomenological modeling of the suprathermal electron generation during magnetic field line reconnections in Experimental Advanced Superconducting Tokamak
The strong suprathermal electron generation is modeled in conditions of bursts of the strong MHD plasma activity in the Experimental Advanced Superconducting Tokamak (EAST) when magnetic field line reconnections took place. Because of the fast changes in the magnetic flux during these magnetic field...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/122112 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Phenomenological modeling of the suprathermal electron generation during magnetic field line reconnections in Experimental Advanced Superconducting Tokamak / Yu.M. Marchuk, I.M. Pankratov // Вопросы атомной науки и техники. — 2017. — № 1. — С. 6-9. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-122112 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1221122017-06-28T03:02:36Z Phenomenological modeling of the suprathermal electron generation during magnetic field line reconnections in Experimental Advanced Superconducting Tokamak Marchuk, Yu.M. Pankratov, I.M. Магнитное удержание The strong suprathermal electron generation is modeled in conditions of bursts of the strong MHD plasma activity in the Experimental Advanced Superconducting Tokamak (EAST) when magnetic field line reconnections took place. Because of the fast changes in the magnetic flux during these magnetic field line reconnections the instant bursts of the induced electric field occur. The instant changes in suprathermal electron density during these bursts of the induced electric field have been analyzed. Моделируется сильная генерация надтепловых электронов в условиях коротких вспышек сильной МГД-активности плазмы при перезамыкании магнитных силовых линий в Experimental Advanced Superconducting Tokamak (EAST). В результате быстрых изменений магнитного потока во время таких перезамыканий магнитных силовых линий индуцируются короткие вспышки электрического поля. Проанализированы мгновенные изменения плотности надтепловых электронов при этих вспышках индуцированного электрического поля. Моделюється сильна генерація надтеплових електронів в умовах коротких сплесків сильної МГД-активності плазми при перемиканні магнітних силових ліній в Experimental Advanced Superconducting Tokamak (EAST). В результаті швидких змін магнітного потоку під час таких перемиканнь магнітних силових ліній індукуються короткі сплески електричного поля. Проаналізовані миттєві зміни густини надтеплових електронів під час цих сплесків індукованого електричного поля. 2017 Article Phenomenological modeling of the suprathermal electron generation during magnetic field line reconnections in Experimental Advanced Superconducting Tokamak / Yu.M. Marchuk, I.M. Pankratov // Вопросы атомной науки и техники. — 2017. — № 1. — С. 6-9. — Бібліогр.: 14 назв. — англ. 1562-6016 PACS: 52.55.Fa; 52.35.Bj; 52.35.Vd http://dspace.nbuv.gov.ua/handle/123456789/122112 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Магнитное удержание Магнитное удержание |
spellingShingle |
Магнитное удержание Магнитное удержание Marchuk, Yu.M. Pankratov, I.M. Phenomenological modeling of the suprathermal electron generation during magnetic field line reconnections in Experimental Advanced Superconducting Tokamak Вопросы атомной науки и техники |
description |
The strong suprathermal electron generation is modeled in conditions of bursts of the strong MHD plasma activity in the Experimental Advanced Superconducting Tokamak (EAST) when magnetic field line reconnections took place. Because of the fast changes in the magnetic flux during these magnetic field line reconnections the instant bursts of the induced electric field occur. The instant changes in suprathermal electron density during these bursts of the induced electric field have been analyzed. |
format |
Article |
author |
Marchuk, Yu.M. Pankratov, I.M. |
author_facet |
Marchuk, Yu.M. Pankratov, I.M. |
author_sort |
Marchuk, Yu.M. |
title |
Phenomenological modeling of the suprathermal electron generation during magnetic field line reconnections in Experimental Advanced Superconducting Tokamak |
title_short |
Phenomenological modeling of the suprathermal electron generation during magnetic field line reconnections in Experimental Advanced Superconducting Tokamak |
title_full |
Phenomenological modeling of the suprathermal electron generation during magnetic field line reconnections in Experimental Advanced Superconducting Tokamak |
title_fullStr |
Phenomenological modeling of the suprathermal electron generation during magnetic field line reconnections in Experimental Advanced Superconducting Tokamak |
title_full_unstemmed |
Phenomenological modeling of the suprathermal electron generation during magnetic field line reconnections in Experimental Advanced Superconducting Tokamak |
title_sort |
phenomenological modeling of the suprathermal electron generation during magnetic field line reconnections in experimental advanced superconducting tokamak |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2017 |
topic_facet |
Магнитное удержание |
url |
http://dspace.nbuv.gov.ua/handle/123456789/122112 |
citation_txt |
Phenomenological modeling of the suprathermal electron generation during magnetic field line reconnections in Experimental Advanced Superconducting Tokamak / Yu.M. Marchuk, I.M. Pankratov // Вопросы атомной науки и техники. — 2017. — № 1. — С. 6-9. — Бібліогр.: 14 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT marchukyum phenomenologicalmodelingofthesuprathermalelectrongenerationduringmagneticfieldlinereconnectionsinexperimentaladvancedsuperconductingtokamak AT pankratovim phenomenologicalmodelingofthesuprathermalelectrongenerationduringmagneticfieldlinereconnectionsinexperimentaladvancedsuperconductingtokamak |
first_indexed |
2025-07-08T21:08:46Z |
last_indexed |
2025-07-08T21:08:46Z |
_version_ |
1837114512538337280 |
fulltext |
ISSN 1562-6016. ВАНТ. 2017. №1(107)
6 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2017, № 1. Series: Plasma Physics (23), p. 6-9.
PHENOMENOLOGICAL MODELING OF THE SUPRATHERMAL
ELECTRON GENERATION DURING MAGNETIC FIELD LINE
RECONNECTIONS IN EXPERIMENTAL ADVANCED
SUPERCONDUCTING TOKAMAK
Yu.M. Marchuk1, I.M. Pankratov1,2
1V.N. Karazin Kharkiv National University, Kharkov, Ukraine;
2Institute of Plasma Physics of the NSC KIPT, Kharkov, Ukraine
The strong suprathermal electron generation is modeled in conditions of bursts of the strong MHD plasma
activity in the Experimental Advanced Superconducting Tokamak (EAST) when magnetic field line reconnections
took place. Because of the fast changes in the magnetic flux during these magnetic field line reconnections the
instant bursts of the induced electric field occur. The instant changes in suprathermal electron density during these
bursts of the induced electric field have been analyzed.
PACS: 52.55.Fa; 52.35.Bj; 52.35.Vd
INTRODUCTION
Runaway electron generation is a fundamental
physical phenomenon. At the same time the runaway
electrons during major disruptions can cause a serious
damage of plasma-facing-component surfaces in large
tokamaks like ITER [1, 2].
The strong electric fields induced during the
tokamak disruption can generate a lot of these runaways.
The energy of runaway electrons can reach as high as
tens of Megaelektronvolt.
1. RUNAWAY GENERATION
Runaway electrons are generated when the electron
energy exceeds a critical energy at which the electric
field driving force is equal to the minimum frictional
drag force in the plasma. There are primary runaway
generation (
||0 0p p , Dreicer generation [3]) and
secondary runaway generation (
||0 0p p , avalanche
generation [4]). The inequality
0.25
/ /0 (2 )cr effp p Z (1)
determines the runaway region of primary generation
process [5] and the inequality
0.54
0 12 (2 ) / 3cr effp p Z (2)
determines the runaway region of secondary generation
process [6], where
/ /0p and
0p
are the initial values of
the electron longitudinal and transverse (with respect to
magnetic field) momenta, respectively, and
2 3 2
0 / // 4cr e ep e m n L E . (3)
Here, e and me are the charge and the resting mass of the
electron, ne is the plasma density L is the Coulomb
logarithm, Zeff is the effective ion charge number, E// is
the tokamak toroidal induced electric field and c is the
velocity of light. The avalanche formed as a result of the
secondary generation with avalanche time tav [7]:
/ /12 (2 ) / 9av e efft m cL Z eE . (4)
2. RUNAWAY EAST DISCHARGE
The runaway ohmic discharge #28957 in EAST was
performed in the limiter configuration with the toroidal
magnetic field B0 = 2 T, the plasma current Ip = 250 kA,
the central line-averaged density <ne> = 2.2×1019 m−3,
the plasma major radius R = 1.86 m and the minor
radius a = 0.45 m (see, e.g. [8]). At the plasma center,
the electron temperature Te ≈ 0.55 keV was obtained
using a soft x-ray pulse height analysis (PHA) system
during the plasma current flat-top phase (duration of
impulse was 5 s). MHD modes m/n=1/1 (the soft x-ray
signal) and m/n=2/1 (the Mirnov coil signals) existed in
the plasma, where m and n are the poloidal and toroidal
mode numbers.
Runaway electrons were created by the ohmic coil
during the start-up phase of the discharge. The
runaway electrons were located around the q = 2
rational magnetic surface (ring-like runaway electron
beam (see, e.g., [8]).
In shot #28957 three types of events were observed
during the stepwise increases in the non-thermal ECE
signal [9]:
1. The MHD (m/n=2/1) small amplitude spikes (type I
events, small non-thermal ECE jumps) emerged
approximately every 0.02 s and coincided with
sawtooth m/n=1/1 peaks.
2. Huge MHD spikes (type II events) emerged
approximately every 0.5 s.
3. Larger amplitude MHD (m/n=2/1) spikes (type III
events) were observed approximately every 0.3 s after
each huge MHD spike (type II events).
In cases II-III types events the MHD (m/n=2/1) spikes
were not correlated with the m/n=1/1 sawtooth
oscillations peaks.
Due to the local runaway generation processes, local
changes in the plasma current density profile should
occur (around the q = 2 rational magnetic surface, where
the runaway electrons are located). The tearing mode
stability depends rather sensitively on the current-
density gradient in the vicinity of the resonant surface
ISSN 1562-6016. ВАНТ. 2017. №1(107) 7
[10]. These local changes in the plasma current density
profile near the q = 2 rational magnetic may be the
trigger for the strong enhancement of the MHD activity
(m/n=2/1 spikes).
The generation of suprathermal electrons should be
enhanced during these MHD spikes because of the fast
changes in the magnetic flux (squeezing and
reconnection of the magnetic field lines). As result of
these changes in magnetic flux the bursts of induced
electric fields occurred [10]. During these bursts of the
induced electric field E//, electron runaway region
increased because the value of pcr dropped (see Eqs. (1)-
(3)). The abrupt growth in the suprathermal electron
population occurred during these bursts of E//. In
Ref. [9] conclusion was made that the step-like non-
thermal ECE jumps may be explained by the abrupt
growth in the suprathermal electron generation (number
of runaways) during MHD m/n=2/1 spikes.
In Ref. 8 the runaway energy E ≈ 30 MeV was
deduced for EAST shot #28957 and conclusion was
made that the secondary runaway generation process
should take place with avalanche time tav ≈ 0.5s (EAST
#28957 parameters: E// ≈ 0.1 V/m, Zeff ≈ 3, and L ≈ 15).
The value of tav ≈ 0.5 s is of the same order as the value
of the time of strong MHD activity (0.3 s or 0.5 s
intervals).
The time behavior of runaway electron density nr is
described by the following well-known equation (see,
e.g., [11-13]):
||
,
r rr
e e
lav
n t n tdn
n t t t
dt tt E
(5)
where
4
2 2 3
04
,e
e
e n t L
m v
||
,
D
E
E
3
2
0
,
4
e
D
e
e n L
E
T
(6)
11
1
416
ZZ effeff
t K Z eeff
. (7)
--------------------------------------------------------------------
The first term in right part of Eq. (5) describes
primary generation, second term describes secondary
generation and last term describes the runaway loss.
Solution of Eq. (5) has the next form:
t
t lav
r
tE
tdtn
0 ||
11
exp
t
t
t
t lav
eeer
tE
tdntdtn
0 0 ||
0
11
exp
. (8)
Because of a very short time of the MHD m/n=2/1
spikes, the linear time dependence of changes of the
bursting electric field was taken for modeling (Fig.1):
20
21
2
0
11
1
0
100
||
.,
;,
;,
;,
ttE
ttt
tt
EE
ttt
tt
EE
tttE
tE
br
br
m
br
br
m
(9)
Fig. 1. Model for bursting electric field
The instant change in suprathermal electron density
during the burst of induced electric field is given by:
3 3( 1)
2
160
3
04
4 21 2
exp
2
Z
eff
effm e br
r br br
av m av le
eff
K ZE n
n
t E t E tem L
Z
1 1
2 2
0 00 0
exp exp ,
2 2
br br br br br br
av m av l av m av l
dtI t t t t dtI t t t t
t E t E t t E t E t
(10)
where
3( 1)3
2 16
0
0 0
( 1)1
exp ,
4
effZ
eff
m
m m
ZE
I t t
E E E
t t
E E
, .m
D
E
E
(11)
8 ISSN 1562-6016. ВАНТ. 2017. №1(107)
Eq. (10) describes of instant change in suprathermal
electron density at the time of the fast reconnection of
magnetic field lines that was accompanied by the burst
of induced electric field. Reconnections of magnetic
field lines leads to the stochastization of magnetic field
lines. Rapid changes of synchrotron spot structure and
intensity during EAST experiments were result of
changes in the runaway beam structure owing this
stochastization. Recall, the synchrotron radiation is used
for the direct observation of the runaway beam image.
The loss term in Eq (10) describes the radial drift of
suprathermal electrons due to this magnetic turbulence.
This equation is used for modeling of experiments in
tokamak EAST.
Note, in Refs. [12, 13] the equation (5) was used for
modeling of disruption generated runaways in JET by
including secondary runaway generation with the value
of avalanche time, tav , which was obtained in Ref. [7]
(see Eq. (4)). This modeling of a JET disruption showed
that here the secondary runaway generation plays a
dominant role.
3. MODELLING OF THE SUPRATHERMAL
ELECTRON GENERATION DURING
HUGE MHD SPIKES
In modeling the same plasma parameters were used
that were in the EAST shot #28957 (see Table).
Plasma parameters for modeling of #28957
The plasma parameters Value
E0 in Eq. (9) 0.1 V/m
Em in Eq. (9) (0.9…5) V/m
ED 16 V/m
Plasma density, ne 2.2×1019 m-3
Effective ion charge, Zeff 3
Coulomb logarithm, L 15
Electron temperature, Te 550 eV
K(Zeff) 0.5
Fig. 2. Instant changes in the suprathermal electron
density on amplitude of bursting electric field
Huge MHD spike (type II events) was modeled for
assumed range of the induced electric field from 0.9 to
5 V/m. The calculation was performed by a standard
program Microsoft Excel which realized Simpson
method for numerical integration. In Fig. 2 the
phenomenological modeling result of instant changes in
suprathermal electron density is presented (curve 1
corresponds to 2.5 ms of burst duration (2τbr), curve 3
for 3.75 ms, curve 2 for 1.7 ms). These three values of
burst durations are result of data analysis from Ref. 9.
They are in good agreement with EAST experiments.
Note, the value Em=12 V/m of induced electric field was
found during a series of minor disruptions in the T-10
tokamak [14].
CONCLUSIONS
The dependence of instant changes in suprathermal
electron density from amplitude of bursting electric
field during the strong MHD plasma activity in EAST
has been investigated. We plan to use obtained results
for further comparison with EAST experiments.
ACKNOWLEDGEMENTS
We thank Dr. R.J. Zhou for useful and fruitful
discussions.
REFERENCES
1. ITER Physics Basis, Chapter 3: MHD stability,
operational limits and disruptions // Nucl. Fusion. 1999,
v. 39, № 12, p. 2175-2389.
2. Progress in the ITER Physics Basis, Chapter 3: MHD
stability, operational limits and disruptions // Nuclear
Fusion. 2007, v. 47, № 6, p. S128-S202.
3. H. Dreicer. Electron and ion runaway in a fully
ionized gas. 1 // Physcal Review. 1959, v. 115, № 2,
p. 238-249.
4. Ya.A. Sokolov // JETP Letter. 1979, v. 29, p. 218-
220.
5. V. Fuchs, R.A. Cairns, C.N. Lashmore-Davies,
M.M. Shoucri. Velocity-space structure of runaway
electrons // Phys. Fluids. 1986, v. 29, № 9, p. 2931-
2936.
6. N.T. Besedin, I.M. Pankratov. Stability of a runaway
electron beam // Nuclear Fusion. 1986, v. 26, № 6,
p. 807-812.
7. I.M. Pankratov, N.T. Besedin. Runaway electron
secondary generation // Proc. 23th EPS Conf. on Contr.
Fusion and Plasma Physics, Kiev. 1996, v. 20C, part. 1,
p. 279-282.
8. R.J. Zhou, I.M. Pankratov, L.Q. Hu, M. Xu,
J.H. Yang. Synchrotron radiation spectra and
synchrotron radiation spot shape of runaway electrons
in Experimental Advanced Superconducting Tokamak //
Phys. Plasmas. 2014, v. 21, p. 063302.
9. I.M. Pankratov, R.J. Zhou, L.Q. Hu. Runaway
electron generation as possible trigger for enhancement
of magnetohydrodynamic plasma activity and fast
changes in runaway beam behavior // Phys. Plasmas.
2015, v. 22, p. 072115.
10. D. Biskamp. Magnetic Reconnection in Plasmas.
Cambridge: “Cambridge University Press”, 2000.
11. R. Jaspers, N.J. Lopes Cardozo, F.C. Schuller,
K.H. Finken, T. Grewe, G. Mank. Disruption generated
runaway electrons in TEXTOR and ITER // Nuclear
Fusion. 1996, v. 36, № 3, p. 367-373.
ISSN 1562-6016. ВАНТ. 2017. №1(107) 9
12. I.M. Pankratov, R. Jaspers, K.H. Finken, I. Entrop.
Secondary generation of runaway electrons and its
detection in tokamaks // Proc. 26th EPS Conf. On
Contr. Fusion and Plasma Physic. Maastricht. 1999,
v. 23J, p. 597-600.
13. R.D. Gill, B. Alper, M. De Baar, T.C. Hender,
M.F. Johnson, V. Riccardo. Behaviour of disruption
generated runaways in JET // Nuclear Fusion. 2002,
v. 42, № 8, p. 1039-1044.
14. P.V. Savrukhin, E.A. Shestakov. A study on the
effects of magnetohydrodynamic perturbations on
nonthermal beam formation during the current decay
phase of disruptions in the T-10 tokamak // Nuclear
Fusion. 2015, v. 55, p. 043016.
Article received 20.12.2016
ФЕНОМЕНОЛОГИЧЕСКОЕ МОДЕЛИРОВАНИЕ ГЕНЕРАЦИИ НАДТЕПЛОВЫХ ЭЛЕКТРОНОВ
ПРИ ПЕРЕЗАМЫКАНИИ МАГНИТНЫХ СИЛОВЫХ ЛИНИЙ В EXPERIMENTAL ADVANCED
SUPERCONDUCTING TOKAMAK
Ю.Н. Марчук, И.М. Панкратов
Моделируется сильная генерация надтепловых электронов в условиях коротких вспышек сильной МГД-
активности плазмы при перезамыкании магнитных силовых линий в Experimental Advanced Superconducting
Tokamak (EAST). В результате быстрых изменений магнитного потока во время таких перезамыканий
магнитных силовых линий индуцируются короткие вспышки электрического поля. Проанализированы
мгновенные изменения плотности надтепловых электронов при этих вспышках индуцированного
электрического поля.
ФЕНОМЕНОЛОГІЧНЕ МОДЕЛЮВАННЯ ГЕНЕРАЦІЇ НАДТЕПЛОВИХ ЕЛЕКТРОНІВ
ПРИ ПЕРЕМИКАННІ МАГНІТНИХ СИЛОВИХ ЛІНІЙ В EXPERIMENTAL ADVANCED
SUPERCONDUCTING TOKAMAK
Ю.М. Марчук, І.М. Панкратов
Моделюється сильна генерація надтеплових електронів в умовах коротких сплесків сильної МГД-
активності плазми при перемиканні магнітних силових ліній в Experimental Advanced Superconducting
Tokamak (EAST). В результаті швидких змін магнітного потоку під час таких перемиканнь магнітних
силових ліній індукуються короткі сплески електричного поля. Проаналізовані миттєві зміни густини
надтеплових електронів під час цих сплесків індукованого електричного поля.
|