Effect of a non-circular shape of the torus on the l=2 torsatron magnetic surfaces

The numerical calculations of magnetic field of the l=2 torsatron magnetic system with non-circular poloidal cross-section of the torus is carried out in the work. It is shown that the value δi≈0.2 of maximal relative deviation of a non-circular poloidal cross-section from basic circular one results...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Kotenko
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/122115
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Effect of a non-circular shape of the torus on the l=2 torsatron magnetic surfaces / V.G. Kotenko // Вопросы атомной науки и техники. — 2017. — № 1. — С. 18-20. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-122115
record_format dspace
spelling irk-123456789-1221152017-06-28T03:02:40Z Effect of a non-circular shape of the torus on the l=2 torsatron magnetic surfaces Kotenko Магнитное удержание The numerical calculations of magnetic field of the l=2 torsatron magnetic system with non-circular poloidal cross-section of the torus is carried out in the work. It is shown that the value δi≈0.2 of maximal relative deviation of a non-circular poloidal cross-section from basic circular one results in a several-fold contraction of closed magnetic surface existence region. There is some increase in the values of rotational transform angle and the mirror ratio in the central closed magnetic surfaces. An enlarged clearance between the outer boundary of field line stochastic layer, i.e., the boundary of the plasma layer having transient plasma parameters (SOL plasma) and the surface of vacuum chamber can be obtained by the transition from the circular torus to the non-circular torus under consideration. Проведены численные расчеты модели магнитной системы l=2 торсатрона с некруговым полоидальным сечением тора. Показано, что максимальная величина относительного отклонения δi≈0,2 полоидального сечения некругового тора от базисного кругового сечения приводит к уменьшению области существования замкнутых магнитных поверхностей и некоторому увеличению величины угла вращательного преобразования и пробочного отношения на центральных магнитных поверхностях. Существенно увеличилось расстояние между слоем стохастических силовых линий, т.е. между плазмой переходных параметров (SOL-плазмы) и поверхностью вакуумной камеры. Проведені чисельні розрахунки моделі магнітної системи l=2 торсатрона з некруглим полоїдальним перерізом тора. Показано, що максимальна величина відносного відхилення δi≈0,2 полоїдального перерізу некруглого тора від базисного круглого перерізу призводить до зменшення області існування замкнутих магнітних поверхонь та до збільшення величини кута обертового перетворення і величини дзеркального відношення на центральних магнітних поверхнях. Суттєво збільшилася відстань між прошарком стохастичних силових ліній, тобто між плазмою перехідних параметрів (SOL-плазмою) і поверхнею вакуумної камери. 2017 Article Effect of a non-circular shape of the torus on the l=2 torsatron magnetic surfaces / V.G. Kotenko // Вопросы атомной науки и техники. — 2017. — № 1. — С. 18-20. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 52.55.Hc http://dspace.nbuv.gov.ua/handle/123456789/122115 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Магнитное удержание
Магнитное удержание
spellingShingle Магнитное удержание
Магнитное удержание
Kotenko
Effect of a non-circular shape of the torus on the l=2 torsatron magnetic surfaces
Вопросы атомной науки и техники
description The numerical calculations of magnetic field of the l=2 torsatron magnetic system with non-circular poloidal cross-section of the torus is carried out in the work. It is shown that the value δi≈0.2 of maximal relative deviation of a non-circular poloidal cross-section from basic circular one results in a several-fold contraction of closed magnetic surface existence region. There is some increase in the values of rotational transform angle and the mirror ratio in the central closed magnetic surfaces. An enlarged clearance between the outer boundary of field line stochastic layer, i.e., the boundary of the plasma layer having transient plasma parameters (SOL plasma) and the surface of vacuum chamber can be obtained by the transition from the circular torus to the non-circular torus under consideration.
format Article
author Kotenko
author_facet Kotenko
author_sort Kotenko
title Effect of a non-circular shape of the torus on the l=2 torsatron magnetic surfaces
title_short Effect of a non-circular shape of the torus on the l=2 torsatron magnetic surfaces
title_full Effect of a non-circular shape of the torus on the l=2 torsatron magnetic surfaces
title_fullStr Effect of a non-circular shape of the torus on the l=2 torsatron magnetic surfaces
title_full_unstemmed Effect of a non-circular shape of the torus on the l=2 torsatron magnetic surfaces
title_sort effect of a non-circular shape of the torus on the l=2 torsatron magnetic surfaces
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2017
topic_facet Магнитное удержание
url http://dspace.nbuv.gov.ua/handle/123456789/122115
citation_txt Effect of a non-circular shape of the torus on the l=2 torsatron magnetic surfaces / V.G. Kotenko // Вопросы атомной науки и техники. — 2017. — № 1. — С. 18-20. — Бібліогр.: 10 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kotenko effectofanoncircularshapeofthetorusonthel2torsatronmagneticsurfaces
first_indexed 2025-07-08T21:09:06Z
last_indexed 2025-07-08T21:09:06Z
_version_ 1837114534674825216
fulltext ISSN 1562-6016. ВАНТ. 2017. №1(107) 18 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2017, № 1. Series: Plasma Physics (23), p. 18-20. EFFECT OF A NON-CIRCULAR SHAPE OF THE TORUS ON THE l=2 TORSATRON MAGNETIC SURFACES V.G. Kotenko Institute of Plasma Physics of the NSC KIPT, Kharkov, Ukraine The numerical calculations of magnetic field of the l=2 torsatron magnetic system with non-circular poloidal cross-section of the torus is carried out in the work. It is shown that the value δi≈0.2 of maximal relative deviation of a non-circular poloidal cross-section from basic circular one results in a several-fold contraction of closed magnetic surface existence region. There is some increase in the values of rotational transform angle and the mirror ratio in the central closed magnetic surfaces. An enlarged clearance between the outer boundary of field line stochastic layer, i.e., the boundary of the plasma layer having transient plasma parameters (SOL plasma) and the surface of vacuum chamber can be obtained by the transition from the circular torus to the non-circular torus under consideration. PACS: 52.55.Hc INTRODUCTION As opposed to an ordinary circular torus poloidal cross-section minor radius of which ac=const. in a noncircular torus the poloidal cross-section minor radius an≠const. In the field of fusion research an example of noncircular torus implementation is, in particular, the vacuum chamber of present-day tokamaks, which have a D-shaped poloidal cross-section. For the first time, the stellarator-type magnetic system with a noncircular torus poloidal cross-section highly elongated along the straight z-axis of the torus, has been discussed in [1, 2]. The authors reported that the influence of toroidal effects on the plasma diffusion and thermal conductivity can be significantly decreased in the systems. In paper [3] were presented the numerical calculation results for the ideal model of the l=2 torsatron magnetic system with non-circular torus, which poloidal cross-section shape differs to a lesser extent from the initial circle. Each helical coil of the ideal model consisted of 1 filament-like conductor turn. The main goal of the investigation was to discover the additional possibility to enlarge the distance between the closed magnetic surface existence region and helical coils, i.e., the first wall-plasma spacing in the stellarator-type fusion reactor [4, 5]. The present study takes into account the model of the l=2 torsatron magnetic system with the non-circular torus the helical coils of which have real size cross- section. INITIAL CALCULATION MODEL As an initial calculation model with a circular torus, we use an l=2 torsatron magnetic system. The main geometrical characteristics of the model are similar to heliotron Large Helical Devise magnetic system characteristics [6]: - toroidicity αс3=aс3/R0=0.25, R0 is the major radius of the torus, aс3 is the average radius of helical coils (see below); - l=2 is the polarity; - m=5 is the number of helical coil pitches along the torus length. Each helical coil comprises 35 filament-like conductor turns. The turns of each helical coil are placed in 5 layers in 7 turns at the layer. The layers are located on the surfaces of 5 nested coaxial torus with minor radii aci/R0=αci=0.2, 0.225, 0.25, 0.275, 0.3 (i=1-5, Fig. 1,a). The base (central) turn of i-layer is marked on i-torus according to the combined winding law [7]: ci= 0-k( ei- 0). (1) Here θci is the poloidal angle, 0=m is the cylindrical winding law, ei=2arctg(((1+ ci)/(1- ci)) 0.5 tg( 0/2)) is the equi-inclined winding law, is the toroidal angle, k=0.52. The last 6 conductor turns in i-layer are arranged turn by turn along the base turn (packing by method 2 [8]). a b Fig. 1. Poloidal cross-sections of the nested coaxial circular tori (a) and inscribed non-circular tori (b) Helical coil conductor turn traces are marked by large black points ISSN 1562-6016. ВАНТ. 2017. №1(107) 19 =0 o =9 o =18 o Fig. 2. Poloidal cross-sections of the magnetic surfaces in the initial calculation model with circular torus. Cross-sections of the vacuum chamber is pointed out by clarified line Fig. 2 shows the calculated poloidal cross-sections for the helical coils and the closed magnetic surface configuration in the magnetic system model under consideration. The cross-sections are spaced apart by the toroidal angle φ within the limits of the magnetic field half-period, φ=0º, 9º, 18º. As is seen from Fig. 2, the chosen combined law for the helical coil winding provides the mode for the closed magnetic surface configuration with a centered planar magnetic axis [7]. In all three cross-sections, the magnetic axis traces are disposed in the torus equatorial plane and its major radius remains invariable, R0ax/R0=1. The mode can be realized at compensating uniform magnetic field Bz/B0=0.35, where B0 is the amplitude of the toroidal component of the magnetic field generated by helical coils on the circular axis of the torus. The average radius of the last closed magnetic surface is rlc/R0=0.14. The magnetic surface parameter values are presented below (in brackets). Fig. 2 also represents (dashed lines) the calculated cross-sections of the surface of the outer boundary of the field-line stochastic layer [9, 10], i.e., the boundary of the plasma layer having transient plasma parameters (SOL plasma). CALCULATION MODEL WITH A NON- CIRCULAR TORUS Similar to magnetic system with circular torus each helical coil of the magnetic system with non-circular torus comprises 35 filament-like conductor turns. The turns of each helical coil are placed in 5 layers in 7 turns at the layer. The layers are located on the surface of 5 the nested coaxial non-circular torus. By analogy with [3] the running radius of non-circular torus cross- section was determined from the equation: ni= ci(1-δi|cos( 0)|), where δi=0.175, 0.178, 0.18, 0.182, 0.184 (i=1-5, see Fig. 1, b). Consequently the base (central) turn of i-layer is marked on non-circular i-torus according to the combined winding law: θ= 0-k (2arctg(((1+ ni)/(1- ni)) 0.5 tg( 0/2))- 0), where k=0.52. Fig. 3 shows the poloidal cross-sections calculated for the magnetic surface configuration generated by helical currents, lying on the surfaces of non-circular tori. It is seen from the Fig. 3, the combined law opted for the helical coil windings for the system with non- circular torus provides a mode for the closed magnetic surface configuration with the centered planar magnetic axis too. The mode is realized at a compensating uniform magnetic field value Bz/B0 =0.361. The average radius of the last closed magnetic surface is rlc/R0=0.047. The rotational transformation angle (in 2π units) is ιaxis→ιlc=0.98 (0.5)→1.14 (0.75) on the magnetic surfaces, a zero-order magnetic well (hill) U=-0.005 (0.002) takes place, and the value of mirror ratio is γaxis→γlc=1.05(1.02)→1.31(1.55). The appropriate parameter values for the initial magnetic surface configuration are indicated in brackets. Fig. 2 also represents (dashed lines) the calculated cross-sections of the surface of the outer boundary of the field-line stochastic layer. =0 o =9 o =18 o Fig. 3. Poloidal cross-sections of the magnetic surfaces in the calculation model with the non-circular torus 20 ISSN 1562-6016. ВАНТ. 2017. №1(107) CONCLUSIONS Numerical calculations of magnetic field in the l=2 torsatron magnetic system model with the non-circular torus the helical coils of which have real size cross- sections is carried out in the work. Similar to ideal magnetic system model [3] the transition from the circular torus to the non-circular one results in a several- fold contraction of closed magnetic surface existence region. A noticeable increase in the values of the rotational transform angle and the mirror ratio is observed in the central magnetic surfaces. A zero-order magnetic well value takes place. An enlarged clearance can be obtained between the outer boundary of field line stochastic layer and the vacuum chamber surface. The result received can promote the further development the conception of stellarator-type fusion reactor with enlarged the plasma-1 st wall spacing. REFERENCES 1. I.S. Danilkin, L.M. Kovrizhnykh. Magnetic trap for current-free plasma with elliptic magnetic surfaces – stellatron (finger-ring stellarator) // Pis’ma v Zhurnal Ehksperimental’noj i Teoreticheskoj Fiziki 19 (4). 1974, p. 193-197 (in Russian). 2. I.S. Danilkin, L.M. Kovrizhnykh. Stellatron-a magnetic system for containment of current-free plasma with improved toroidal equilibrium // Nuclear Fusion. Supplement. 1975, p. 93-98. 3. V.G. Kotenko. Magnetic field of helical currents flowing over the surface of a non-circular torus // Problems of Atomic Science and Technology. Ser. “Termoyaderny Sintez”, Moscow. 2013, v. 36, № 4, p. 64-69 (in Russian). 4. V. Kotenko, E. Volkov, K. Yamazaki. The right method of approach to the commercial fusion reactor problem // 30th EPS Conf. on Contr. Fusion. and Plasma. Phys. St. Petersburg, 7-11 July 2003, ECA. v. 27A, P-3.1. 5. V. Kotenko, E. Volkov, K. Yamazaki. An eventual approach to the commercial fusion reactor problem on the base of the stellarator-type closed magnetic systems. // Problems of Atomic Science and Technology. Ser. “Termoyaderny Sintez”, Moscow. 2004, v. 3, p. 29-37 (in Russian). 6. O. Motojima. Status of LHD project and construction. // A Collection of Papers Presented at the IAEA Technical Committee Meeting on Stellarators and Other Helical Confinement Systems at Garching, Germany 10- 14 May 1993, IAEA, Vienna, Austria. 1993, p. 41. 7. V. Kotenko, E. Volkov, K. Yamazaki. Field ripple behavior in helical systems //Plasma Devices and Operations. 2004, v. 12, № 2, p. 143-153. 8. V.G. Kotenko, D.V. Kurilo, Yu.F. Sergeev. The influence of methods of conductor packing in the helical coil poles on the magnetic configuration of l=2 torsatron in the regime with a planar magnetic axis // Problems of Atomic Science and Technology, Ser. “Termoyaderny Sintez”, Moscow. 2005, v. 4, p. 42-52 (in Russian). 9. V.E. Bykov, Yu.K. Kuznetsov, A.V.Khodyachikh, O.S. Pavlichenko, V.G. Peletminskaya. Magnetic divertor in the l=3 torsatron // A Collection of Papers Presented at the IAEA Technical Committee Meeting on Stellarators and other Helical Confinement Systems. Garching, Germany, 10-14 May 1993, IAEA, Vienna, Austria. p. 391. 10. V.G. Kotenko. Possible mechanism for onset of vertical asymmetry of diverted plasma fluxes in a torsatron // Fiz. Plazmy. 2007, v. 33, № 3, p. 280 (in Russian), Plasma Phys. 2007, v. 33, № 3, 2007, p. 249 (Engl. Transl.). Article received 22.12.2016 ВЛИЯНИЕ НЕКРУГОВОЙ ФОРМЫ ТОРА НА МАГНИТНЫЕ ПОВЕРХНОСТИ ДВУХЗАХОДНОГО (l=2) ТОРСАТРОНА В.Г. Котенко Проведены численные расчеты модели магнитной системы l=2 торсатрона с некруговым полоидальным сечением тора. Показано, что максимальная величина относительного отклонения δi≈0,2 полоидального сечения некругового тора от базисного кругового сечения приводит к уменьшению области существования замкнутых магнитных поверхностей и некоторому увеличению величины угла вращательного преобразования и пробочного отношения на центральных магнитных поверхностях. Существенно увеличилось расстояние между слоем стохастических силовых линий, т.е. между плазмой переходных параметров (SOL-плазмы) и поверхностью вакуумной камеры. ВПЛИВ НЕКРУГОВОЇ ФОРМИ ТОРУ НА МАГНІТНІ ПОВЕРХНІ ДВОЗАХОДНОГО (l=2) ТОРСАТРОНУ В.Г. Котенко Проведені чисельні розрахунки моделі магнітної системи l=2 торсатрона з некруглим полоїдальним перерізом тора. Показано, що максимальна величина відносного відхилення δi≈0,2 полоїдального перерізу некруглого тора від базисного круглого перерізу призводить до зменшення області існування замкнутих магнітних поверхонь та до збільшення величини кута обертового перетворення і величини дзеркального відношення на центральних магнітних поверхнях. Суттєво збільшилася відстань між прошарком стохастичних силових ліній, тобто між плазмою перехідних параметрів (SOL-плазмою) і поверхнею вакуумної камери.