Stochastic differential equations of charged particle motion in toroidal plasmas
Stochastic equations of charged particle motion in toroidal plasma are derived using the Ito theory of stochastic processes. Expressions for stochastic differentials of the full set of drift variables associated with the kinetic theory of charged particles in plasma with Coulomb collisions are obtai...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/122122 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Stochastic differential equations of charged particle motion in toroidal plasmas / A.A. Gurin, V.O. Yavorskij // Вопросы атомной науки и техники. — 2017. — № 1. — С. 80-83. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-122122 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1221222017-06-28T03:02:56Z Stochastic differential equations of charged particle motion in toroidal plasmas Gurin, A.A. Yavorskij, V.O. Фундаментальная физика плазмы Stochastic equations of charged particle motion in toroidal plasma are derived using the Ito theory of stochastic processes. Expressions for stochastic differentials of the full set of drift variables associated with the kinetic theory of charged particles in plasma with Coulomb collisions are obtained. Equations obtained may be used for the modelling of fast charged particle motion in toroidal plasmas, namely for Monte-Carlo simulation the dynamics of charged fusion products and beam ions in tokamaks. В терминах теории стохастических процессов Ито получены выражения для стохастических дифференциалов полного набора дрейфовых переменных, соответствующих кинетической теории заряженных частиц в плазме с кулоновскими столкновениями. Полученные стохастические уравнения движения являются последовательными с точки зрения учёта эффектов кулоновских столкновений и не являются более сложными по сравнению с теми, что обычно используются в традиционных модельных подходах. В термінах теорії стохастичних процесів Іто отримано вирази для стохастичних диференціалів повного набору дрейфових змінних, що відповідають кінетичній теорії заряджених частинок у плазмі з кулонівськими зіткненнями. Отримані стохастичні рівняння руху є послідовними щодо врахування ефектів кулонівських зіткнень, та не є складнішими у порівнянні із тими, що використовуються зазвичай в поширених модельних підходах. 2017 Article Stochastic differential equations of charged particle motion in toroidal plasmas / A.A. Gurin, V.O. Yavorskij // Вопросы атомной науки и техники. — 2017. — № 1. — С. 80-83. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 52.55.Hc, 52.55.Pi, 55.25.Fi, 52.35.Bj, 05.45.-a http://dspace.nbuv.gov.ua/handle/123456789/122122 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Фундаментальная физика плазмы Фундаментальная физика плазмы |
spellingShingle |
Фундаментальная физика плазмы Фундаментальная физика плазмы Gurin, A.A. Yavorskij, V.O. Stochastic differential equations of charged particle motion in toroidal plasmas Вопросы атомной науки и техники |
description |
Stochastic equations of charged particle motion in toroidal plasma are derived using the Ito theory of stochastic processes. Expressions for stochastic differentials of the full set of drift variables associated with the kinetic theory of charged particles in plasma with Coulomb collisions are obtained. Equations obtained may be used for the modelling of fast charged particle motion in toroidal plasmas, namely for Monte-Carlo simulation the dynamics of charged fusion products and beam ions in tokamaks. |
format |
Article |
author |
Gurin, A.A. Yavorskij, V.O. |
author_facet |
Gurin, A.A. Yavorskij, V.O. |
author_sort |
Gurin, A.A. |
title |
Stochastic differential equations of charged particle motion in toroidal plasmas |
title_short |
Stochastic differential equations of charged particle motion in toroidal plasmas |
title_full |
Stochastic differential equations of charged particle motion in toroidal plasmas |
title_fullStr |
Stochastic differential equations of charged particle motion in toroidal plasmas |
title_full_unstemmed |
Stochastic differential equations of charged particle motion in toroidal plasmas |
title_sort |
stochastic differential equations of charged particle motion in toroidal plasmas |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2017 |
topic_facet |
Фундаментальная физика плазмы |
url |
http://dspace.nbuv.gov.ua/handle/123456789/122122 |
citation_txt |
Stochastic differential equations of charged particle motion in toroidal plasmas / A.A. Gurin, V.O. Yavorskij // Вопросы атомной науки и техники. — 2017. — № 1. — С. 80-83. — Бібліогр.: 6 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT gurinaa stochasticdifferentialequationsofchargedparticlemotionintoroidalplasmas AT yavorskijvo stochasticdifferentialequationsofchargedparticlemotionintoroidalplasmas |
first_indexed |
2025-07-08T21:09:50Z |
last_indexed |
2025-07-08T21:09:50Z |
_version_ |
1837114581774761984 |
fulltext |
ISSN 1562-6016. ВАНТ. 2017. №1(107)
80 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2017, № 1. Series: Plasma Physics (23), p. 80-83.
STOCHASTIC DIFFERENTIAL EQUATIONS OF CHARGED PARTICLE
MOTION IN TOROIDAL PLASMAS
A.A. Gurin, V.O. Yavorskij
Institute for Nuclear Research, Kyiv, Ukraine
Stochastic equations of charged particle motion in toroidal plasma are derived using the Ito theory of stochastic
processes. Expressions for stochastic differentials of the full set of drift variables associated with the kinetic theory
of charged particles in plasma with Coulomb collisions are obtained. Equations obtained may be used for the
modelling of fast charged particle motion in toroidal plasmas, namely for Monte-Carlo simulation the dynamics of
charged fusion products and beam ions in tokamaks.
PACS: 52.55.Hc, 52.55.Pi, 55.25.Fi, 52.35.Bj, 05.45.-a
INTRODUCTION
Description of the charged particle behaviour in
toroidal plasmas usually is based on the kinetic
equations with the Fokker-Plank collisional term
accounting for the effect of Coulomb collisions.
Alternatively the detailed microscopic depiction of
single particle motion may be achieved on the base of
the Markov theory in terms of the Ito approach of
stochastic differential equations [1, 2].
This paper aims the derivation of stochastic
equations of single particle motion in plasma using the
Ito theory of stochastic processes. We obtain the
expressions for the stochastic differentials of the full set
of drift variables in exact correspondence with the
kinetic theory of charged particles in plasma with
Coulomb collisions [3]. Equations derived can be used
for the Monte-Carlo simulation of the dynamics of
charged fusion products and beam ions in tokamaks.
Notice that such kind of modelling is usually based on
the use of supporting Monte-Carlo models [4].
1. BASIC FORMULAS OF STOCHASTIC
ANALYSIS
Ito stochastic differential equations [1, 2] of multi-
dimensional diffusive process X(t) = (X1(t),..., Xn(t)),
1
, , , ( )
m
i i i j i j j
j
dX a t X dt b t X b t X dW t , (1)
as well as the Kolmogorov equation for the transition
probability of Markov process
0 0
( , )t XP t X from the state
X0 in an arbitrary time t0 into the state X at a time t>t0
0 0 0 0
0 0
1
, 1
, , ,
1
, ,
2
i
i j
n
t t X x i t X
i
n
x x ij t X
i j
P t X a t X P t X
D t X P t X
(2)
represent the alternative approaches of the complete
description of the process. According to Ito approach
the coefficients a, b in expression for stochastic
differential are determined by the left edge of time
interval (t, t+dt) and supposing the values X(t) to be
known the stochasticity of differentials dX is delivered
by the independent increments of the components dWj =
Wj(t+dt) – Wj(t) of Wiener process. Namely the above
structure of Ito stochastic differential results in the
Markoviety of process X(t) (alternative definitions of
stochastic differential, e.g. Stratonovich meaning, are
not considered here). The components of Wiener
process are independent and represent the elementary
Markovian Gaussian processes with the independent
growths and transition probabilities as
follows
2
, ( , ) exp 2 2
jt X j j jP t X X X , (3)
where τ is an arbitrary value. It follows from Eq. (3) that
the random part of stochastic differential (1) is the
dominant as the Wiener differential is of the order of
.dt Respectively the random part may be represented
as j jdW dt with γj – the Gaussian random numbers
with a dispersion that equals 1. This circumstance is
crucial for the process calculation. Nevertheless the
quadratic terms dWjdWk are of the order of dt. From Eq.
(3) it follows that for infinitely small τ = dt the square
of infinitely small growth dWj=Wj(t+dt)–Wj(t) is
determined by the process dispersion with a probability
one and can be considered as a non-random value, i.e.
dWj
2 = dt, with
dWjdWk = δjkdt (4)
for multidimensional processes. From above equation it
follows also the subsequent equality
m
k=1
=i j ik jkdx dx b b dt . (5)
These relations determine the rule of correspondence of
the diffusion coefficients
1
m
i j ik jk
k
D b b in stochastic
equations (1) and in Kolmogorov equation (2). They
represent the basis of Ito formula for the stochastic
differential of arbitrary function F(X) –
2
1 , 1
( )
2i i j
n n
i x ij x x
i i j
dt
dF X dx F D F
(6)
as well. Eqs. (1-5) represent the basis of Ito analysis that
essentially extends the classical mathematical analysis.
The number of Wiener components m in stochastic
differential equation (1) can be less than the number n
of the components of process X and what is more not
ISSN 1562-6016. ВАНТ. 2017. №1(107) 81
every of Eqs. (1) may contain a fluctuating part. Namely
such a situation is realised in plasma theory formulated
in terms of the kinetic equations for the distribution
functions fa(r,v) of plasma components a in the phase
space of spatial coordinates and velocities. The most
complete form of these equations is as follows [4]
/
/
/
2 2
/ /
2
,
1 1
, ,
2
1 ( , ),
, , 4 ,
, , ,
a b
a a a
b
a ba
v a v a
a
a b a
v
b
a b a b a b
a
b
b b b b b b
b
f f f C
t
e
C f f
m c
m
L
m
e e
t X L L
m
d
f t f t d
v
v v
v a
a E v×B A D
A r v
D
v
r, v v v r, v v
v v
(7)
where Ca/b is the collisional term, Λ – the Coulomb
logarithm. Kinetic equations (6) can be treated as the
direct Kolmogorov equations for the unconditional
simultaneous single-particle probability renormalized in
accordance with the definition of distribution function fa
as the density of particles a in the phase space X=(r,v).
Though the kinetic theory does not use the approach of
Markov processes the unambiguous correspondence of
kinetic and Markov approaches is established by the
equality
0 0
0 0 0
,
, ( ) ( , ) ( , )
n
t X
f t X dX f t X P t X that
serves as the basis for the Monte-Carlo modelling of a
macro-canonical ensemble. Therefore the stochastic
differential equations of particle motion corresponding
to the kinetic theory have a form:
, ( ) , d dt d dt dr v v a A b W D b b . (8)
Here W is a 3D Wiener process.
2. VELOCITY DIFFUSION IN GYRO-
TROPIC PLASMA
Stochastic equations (8) are rather compact and
striking for the numerical modelling. Though, even if
the problems of the numerical modelling of random
changes are solved, in general case of 3D velocity
diffusion there is a complex problem of the expansion
of the matrix of diffusion coefficients D of kinetic
equation as a product of two matrixes of diffusion
coefficients b in equation of stochastic motion. In
practice this problem is avoided in modelling of charged
particle motion in strong magnetic field. In this case the
fast gyration can be excluded from the analysis using
the drift theory of motion for longitudinal u=vh and
transverse w =v-uh velocity components with h = B/B
[5, 6]. Drift theory is developed for determinable motion
of charged particle and is based on the averaging over
the fast gyration. Similar approach is applicable for
stochastic equation of motion as well. The basic
formulae of drift theory are written in local orthogonal
coordinate system (h, e1, e2) associated with the
inhomogeneous magnetic field:
1 2
1
1 1
/ 1
/
, cos sin ,
,
because , .
( , )
0
0 , ,
0 0
1
w w
u w w
u w w
w w w
a b
w
uu wu
uw ww u w w
a b a
b
u w
w
w w w
L w u w
D D
D D
D
m
L
m
v
v v
v
v
v h e e e e
h e e
h e e
e h e e e e
D e e
h e
A ( , ).u w
(9)
Thus if the potential φ of kinetic theory is independent
on gyro phase ζ the problem of the expansion of
diffusive matrix is simplified as the 2x2 block of the
matrix can be represented as two matrixes of same
dimensionality (corresponding solution will be provided
separately). It should be pointed out that 3D Wiener
process determined in Eq. (7) in arbitrary (not related
with the magnetic field) coordinate system is
characterised by the components ( , , )h uW W W , which
are the standard independent Wiener processes. In fact,
using relationships (4), it can be shown that
0h w w wdW dW d d dt h W e W h e .
Derivation of the stochastic equations for u, w is based
on the Ito formula (5) as the differential dr does not
contain the Wiener fluctuations, variable u=hv is linear
with respect of v and differentiation of u is equivalent to
a standard differentiation:
.hh h hw w
du d dt
b dW b dW
h v v v h a A h
Variable w is linear regarding v with
1
, .ww w
w
v v v
e e e
Correspondingly the equation for dw has a following
form:
1
2
.
w
w w
wh h ww w
dw d
D dt
w
b dW b dW
e v
v v e a A e
Finally last two stochastic equations should be averaged
over the gyro phase. Correct averaging procedure
supposes the usage of stochastic integrals for growths
, ,
t t
t t
u du w dw
where time interval δt includes a lot of gyro periods,
however, is small over the time scales of the
characteristic variation of values u,w. This procedure
leads to the well-known (in drift theory) regular terms
82 ISSN 1562-6016. ВАНТ. 2017. №1(107)
proportional to δt, while the stochastic contributions are
introduced using the independent Wiener components
δWh, δWw. In drift stochastic differential equations the
values δt, δWh, δWw are supposed to be infinitely small.
Finally we get:
2
div ,
2
1
div .
2 2
h hh h hw w
w wh h ww w
e w
du A dt b dW b dW
m
uw
dw A D dt b dW b dW
w
h E h
h
Using Ito formulae
2 22 , 2 ,uu wwd u udu D dt d w wdw D dt
we get equations for well-known constants of motion
2
2 20 1
, = u +w
2 2
B w
B
as follows:
0 1
,
2
1
2
, .
w ww
u w uu ww
wu u ww w
B
d wA D D dt wdW
B
e
d u uA wA D D D dt
m
u w dW dW b dW b dW
h E
Knowledge of the stochastic equation of motion allows
deriving a corresponding direct Kolmogorov equation or
Fokker-Planck equation. Below is the relevant
derivation.
3. VELOCITY DIFFUSION IN ISOTROPIC
PLASMA
In case of isotropic plasma, when the distribution
function of charged particles fb in collisional term Ca/b
depends on the absolute value of the velocity v=(u2+
w2)1/2, the potentials φ, ψ depend only on v and diffusion
coefficients are as follows:
/
2 2
1
, ,a b
bL N
v v v
vv vv
D U U U 1 U . (9)̓
Important is the orthogonality of U and U ,
0 U U and following relationships , U U U
, U U U 0. U e Consequently the problem of
the expansion of the matrix of diffusion coefficients is
easily resolved. The stochastic equations of the velocity
diffusion are of the following form (drifts are not
included):
/ 1
/ 1 /
( ) .
1 ,
, .
t
a b
b a b
a b a b
b b
d dt D D d
L N m m v dt
D L N v D L N
v a A U U W
A v (10)
In variable u, w the equations can be rewritten as
2 2
2
2 2
( ) ,
1
,
2
.
u u uu u uw w
w w wu u ww w
uu uw
wu ww
du a A dt b dW b dW
dw a A D dt b dW b dW
w
b b
b b
w D u D uw D D
v
uw D D u D w D
(10҆)
However, usage of the asymmetric matrix of diffusion
coefficients allows the more compact matrix expansion.
With new independent Wiener differentials dUt, dWt the
basic equations of stochastic dynamics can be
essentially simplified
1
1
( )
/(2 )
u u t t
w w t t
du a A dt w D dU u D dW v
dw a A D w dt u D dU w D dW v
Ito stochastic differential equations for energy =
(u2+w2)/2, pitch-parameter = 0/; and transverse
energy 0 = w2/2
0
* *
2
0 0
0
0 02
2 2
0 0 0 0
2 2
2
*
1
2
,
Sp / 2 ,
1 1 ...
1
1 ,
1
2
1
4
2
w ww
wu t ww t
u w t
ww uu
wu
d wa D D dt
w b dU b dV
d uA wA dt v D dV
d d d
d
d
d d
d d u d du
u D D w D dt
u w
b d
D
2
* * * .
2
t ww t uu t uw t
uw
U b dW b dU b dW
(11)
In Eq. (12) terms with dWt annihilate and term in Ito
differential d is reduced to dUt dWt. Finally
4 2 2
4 2 * 2 *
4 2 2
2
2 2 .
ww uu
wu uu t
t
d v u D D w D dt
v u wb uw b dU
v u w D dt uvw D dU
(12)
4. SPATIAL DIFFUSION
In guiding centre coordinates R = r - , = gv, g =
h/ the Ito differential of R looks like
( ) .d d d d R r r g×v g× v (13)
For fluctuating Wiener part of dR we get
ISSN 1562-6016. ВАНТ. 2017. №1(107) 83
1
[ ( ) ]wu u ww w wd b dW b dW b dV
R e e . (14)
Considering stochastic Ito integral within the interval
( , ), 1t t t t we account for the Gaussian nature
of stochastic integrals which can be approximated by
Wiener processes with dispersion and correlation
determined by the integrals
1 2( ) ( )
t t t t
t t
d t d t
R R R R . (15)
Gyro averaging of above expression results in
*2 *2 *2
2
( )( )
2
wu ww
t
b b b
R R 1 hh . (16)
In axisymmetric tokamak-like configuration
* *
*2 *2 *2
2 2
( ),
1 1
( ) ( ),
2 2
s n n
s wu ww ww
d D dW dW
D b b b D D
R n n
(17)
where Ds the 2D spatial diffusion. Finally we get
/ 2
2 2
2 2
, ,
,
.
2
d
n n
a b
b
v vv vv
d u u w dt
D dW dW
L N u
D w v
vv
R
R
R h R v R
n n
R
R
(18)
CONCLUSIONS
Correct stochastic equations of charged particle
motion which correspond to the drift kinetic approach
are derived in terms of Ito theory of stochastic
processes. They represent the set of four equations
containing the four independent Wiener components.
Obtained equations are consistent with the theory of
Coulomb collisions and are not more complex as
compared to those used in the conventional approaches
[4]. They can be used for the Monte-Carlo simulation of
the dynamics of charged fusion products and beam ions
in tokamaks.
ACKNOWLEDGEMENTS
This work was supported in part by the Project
#0112U002797 of the National Academy of Sciences of
Ukraine.
REFERENCES
1. K. Ito. Stochastic integral // Proc. Imp. Acad. Tokyo,
1944, v. 20.
2. I.I. Gikhman, A.V. Skorokhod. Stochastic differential
equations. Kyiv: „Naukova Dumka“, 1968 (in Russian).
3. B.A. Trubnikov. Particle Interactions in a Fully
Ionized Plasma // Reviews of Plasma Physics. Bureau,
New York, 1965, v. 1, p. 105.
4. A.H. Boozer. Monte Carlo collision operators for use
with exact trajectory integrators // Physics of Plasmas.
2002, v. 9, p. 4389.
5. R.D. Hazeltine. Recursive derivation of drift-kinetic
equation // Plasma Phys. 1973, v. 15, p. 77-80.
6. N.N. Bogolyubov, Yu.A. Mitropolsky. Asymptotic
methods in the theory of nonlinear oscillations.
Moscow: “State Publishing House technical and
theoretical literature”, 1955.
Article received 29.09.2016
СТОХАСТИЧЕСКИЕ УРАВНЕНИЯ ДВИЖЕНИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ
В ТОРОИДАЛЬНОЙ ПЛАЗМЕ
А.А. Гурин, В.А. Яворский
В терминах теории стохастических процессов Ито получены выражения для стохастических
дифференциалов полного набора дрейфовых переменных, соответствующих кинетической теории
заряженных частиц в плазме с кулоновскими столкновениями. Полученные стохастические уравнения
движения являются последовательными с точки зрения учёта эффектов кулоновских столкновений и не
являются более сложными по сравнению с теми, что обычно используются в традиционных модельных
подходах.
СТОХАСТИЧНІ РІВНЯННЯ РУХУ ЗАРЯДЖЕНИХ ЧАСТИНОК
У ТОРОЇДАЛЬНІЙ ПЛАЗМІ
А.А. Гурин, В.О. Яворський
В термінах теорії стохастичних процесів Іто отримано вирази для стохастичних диференціалів повного
набору дрейфових змінних, що відповідають кінетичній теорії заряджених частинок у плазмі з
кулонівськими зіткненнями. Отримані стохастичні рівняння руху є послідовними щодо врахування ефектів
кулонівських зіткнень, та не є складнішими у порівнянні із тими, що використовуються зазвичай в
поширених модельних підходах.
|