The capacitive component of double layer current in plasma
The features of nonstationary double layers in the high-current pulsed discharges have been theoretically and experimentally investigated in this paper. The expression for the capacity of strong double layer in quasi-MHD approximation has been obtained and the area of its applicability has been indi...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/122155 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The capacitive component of double layer current in plasma / Ya.O. Hrechko, N.A. Azarenkov, Ie.V. Babenko, D.L. Ryabchikov, I.N. Sereda, M.A. Shovkun, A.F. Tseluyko // Вопросы атомной науки и техники. — 2017. — № 1. — С. 219-222. — Бібліогр.: 3 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-122155 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1221552017-07-01T16:43:19Z The capacitive component of double layer current in plasma Hrechko, Ya.O. Azarenkov, N.A. Babenko, Ie.V. Ryabchikov, D.L. Sereda, I.N. Shovkun, M.A. Tseluyko, A.F. Низкотемпературная плазма и плазменные технологии The features of nonstationary double layers in the high-current pulsed discharges have been theoretically and experimentally investigated in this paper. The expression for the capacity of strong double layer in quasi-MHD approximation has been obtained and the area of its applicability has been indicated. The equation for the capacitive component of the double layer current has been derived in this paper. The dynamics of the double layer current capacitive component in the high-current pulsed discharge and the way to verify the calculations has been shown. Теоретически и экспериментально исследуются особенности нестационарных двойных слоёв в сильноточных импульсных разрядах. В квази-МГД-приближении получено выражение для ёмкости сильного двойного слоя и указана область его применимости. Получено уравнение для ёмкостной составляющей тока двойного слоя. Показана динамика ёмкостной составляющей тока двойного слоя в сильноточном импульсном разряде и приведен способ верификации расчётов. Теоретично та експериментально досліджуються особливості нестаціонарних подвійних шарів у си-льнострумових імпульсних розрядах. У квазі-МГД-наближенні отримано вираз для ємності сильного подвійного шару та вказана область його застосування. Отримано рівняння для ємнісної складової струму подвійного шару. Показана динаміка ємнісної складової струму подвійного шару в сильнострумовому імпульсному розряді та приведено спосіб верифікації розрахунків. 2017 Article The capacitive component of double layer current in plasma / Ya.O. Hrechko, N.A. Azarenkov, Ie.V. Babenko, D.L. Ryabchikov, I.N. Sereda, M.A. Shovkun, A.F. Tseluyko // Вопросы атомной науки и техники. — 2017. — № 1. — С. 219-222. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 52.40.Kh, 52.58.Lq, 52.59.Mv http://dspace.nbuv.gov.ua/handle/123456789/122155 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Hrechko, Ya.O. Azarenkov, N.A. Babenko, Ie.V. Ryabchikov, D.L. Sereda, I.N. Shovkun, M.A. Tseluyko, A.F. The capacitive component of double layer current in plasma Вопросы атомной науки и техники |
description |
The features of nonstationary double layers in the high-current pulsed discharges have been theoretically and experimentally investigated in this paper. The expression for the capacity of strong double layer in quasi-MHD approximation has been obtained and the area of its applicability has been indicated. The equation for the capacitive component of the double layer current has been derived in this paper. The dynamics of the double layer current capacitive component in the high-current pulsed discharge and the way to verify the calculations has been shown. |
format |
Article |
author |
Hrechko, Ya.O. Azarenkov, N.A. Babenko, Ie.V. Ryabchikov, D.L. Sereda, I.N. Shovkun, M.A. Tseluyko, A.F. |
author_facet |
Hrechko, Ya.O. Azarenkov, N.A. Babenko, Ie.V. Ryabchikov, D.L. Sereda, I.N. Shovkun, M.A. Tseluyko, A.F. |
author_sort |
Hrechko, Ya.O. |
title |
The capacitive component of double layer current in plasma |
title_short |
The capacitive component of double layer current in plasma |
title_full |
The capacitive component of double layer current in plasma |
title_fullStr |
The capacitive component of double layer current in plasma |
title_full_unstemmed |
The capacitive component of double layer current in plasma |
title_sort |
capacitive component of double layer current in plasma |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2017 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/122155 |
citation_txt |
The capacitive component of double layer current in plasma / Ya.O. Hrechko, N.A. Azarenkov, Ie.V. Babenko, D.L. Ryabchikov, I.N. Sereda, M.A. Shovkun, A.F. Tseluyko // Вопросы атомной науки и техники. — 2017. — № 1. — С. 219-222. — Бібліогр.: 3 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT hrechkoyao thecapacitivecomponentofdoublelayercurrentinplasma AT azarenkovna thecapacitivecomponentofdoublelayercurrentinplasma AT babenkoiev thecapacitivecomponentofdoublelayercurrentinplasma AT ryabchikovdl thecapacitivecomponentofdoublelayercurrentinplasma AT seredain thecapacitivecomponentofdoublelayercurrentinplasma AT shovkunma thecapacitivecomponentofdoublelayercurrentinplasma AT tseluykoaf thecapacitivecomponentofdoublelayercurrentinplasma AT hrechkoyao capacitivecomponentofdoublelayercurrentinplasma AT azarenkovna capacitivecomponentofdoublelayercurrentinplasma AT babenkoiev capacitivecomponentofdoublelayercurrentinplasma AT ryabchikovdl capacitivecomponentofdoublelayercurrentinplasma AT seredain capacitivecomponentofdoublelayercurrentinplasma AT shovkunma capacitivecomponentofdoublelayercurrentinplasma AT tseluykoaf capacitivecomponentofdoublelayercurrentinplasma |
first_indexed |
2025-07-08T21:15:37Z |
last_indexed |
2025-07-08T21:15:37Z |
_version_ |
1837114947822157824 |
fulltext |
ISSN 1562-6016. ВАНТ. 2017. №1(107)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2017, № 1. Series: Plasma Physics (23), p. 219-221. 219
THE CAPACITIVE COMPONENT OF DOUBLE LAYER CURRENT
IN PLASMA
Ya.O. Hrechko, N.A. Azarenkov, Ie.V. Babenko, D.L. Ryabchikov, I.N. Sereda, M.A. Shovkun,
A.F. Tseluyko
V.N. Karazin Kharkiv National University, Kharkov, Ukraine
E-mail: yarikgrechko18@gmail.com
The features of nonstationary double layers in the high-current pulsed discharges have been theoretically and
experimentally investigated in this paper. The expression for the capacity of strong double layer in quasi-MHD ap-
proximation has been obtained and the area of its applicability has been indicated. The equation for the capacitive
component of the double layer current has been derived in this paper. The dynamics of the double layer current ca-
pacitive component in the high-current pulsed discharge and the way to verify the calculations has been shown.
PACS: 52.40.Kh, 52.58.Lq, 52.59.Mv
INTRODUCTION
Recently, the interest in the study of space charge
electric double layer in the plasma has renewed [1]. This
is due to the ability of the double layer to input the pulse
energy with a power density of 1…10 GW/cm2 locally
into the plasma. Such power levels give the opportunity
to obtain intensive neutron fluxes from the plasma, the
super-powerful directional radiation and to provide
high-gradient effect on the solids surface of different
nature for modification of the structural-phase state on
different scale levels.
However, it should be noted that a double layer is a
powerful dynamic system whose parameters are change
at high speed. From electrical point of view double layer
can be represented as an aggregate of a resistor and a
capacitor (Fig. 1,b). When changing the voltage and
current of the layer the capacitor charge also changes.
This entails the appearance of the capacitive component
in the discharge current, which must be taken into ac-
count when calculating the input power into the dis-
charge.
CALCULATING
The value of the current capacitive component tiC
is determined by the double layer charge changing
tQ :
,DL DL
C DL DL
dV dC
i t C V
dt dt
(1)
which depends both on the layer capacity DLC and its
voltage DLV . Therefore, at first we define the layer ca-
pacity.
The double layer capacity
Because the layer thickness is much smaller than its
transverse dimensions, the double layer specific capaci-
ty С1DL we find from the expression:
2
0
1
1
1 DLl
DLDL
DL dzz
VV
q
C . (2)
The charge density distribution in the layer (z) de-
pends on the charge distribution znq of 4th particles
components [2] (see Fig. 1,а):
znqznqznqznqz ririreebibibee , (3)
where be – the accelerated electrons, bi – the accelerat-
ed ions, re – the reflected electrons, ri – the reflected
ions.
Fig. 1. The qualitative potential distribution (a) and the
charge density (c) in the double layer, the equivalent
electrical circuit of the double layer (b)
For accelerated electrons and ions the charge distri-
bution is determined from the current continuity condi-
tions:
z
j
e
m
zv
j
znq
e
be
e
be
be
bee
0
1
2
, (4)
iDL
jbe jbi
e
e
i
e
iC CDL
e
i
e
RDL
e
b
(z)
z 0 lDL
c
е0
i0
VDL
(z)
z 0 lDL
nbe nbi
nre nri
TeC
TiC
TeA
TiA
a
miC
ZiC
miA
ZiA
220 ISSN 1562-6016. ВАНТ. 2017. №1(107)
zVeZ
m
j
zv
j
znq
iDLiA
iA
bi
bi
bi
bibi
0
1
2
, (5)
where φе0,φi0 – potentials corresponding to the starting
energy of the electrons evm eCee 22
00 and ions
eZvm iAiAiAi 22
00 (ZiA – the effective ions charge).
The volume charge density distribution of accelerat-
ed ions using a Langmuir ratio [3]
bebieiAiA jjmZm , can be represented as:
zV
j
e
m
znq
iDL
be
e
bibi
02
. (6)
The volume charge density distribution of reflected
electrons znq ree and ions znq riri in case of the
Maxwell velocity particle distribution function obey the
Boltzmann law, and for strong double layer is given by:
eT
zV
eDLi
be
e
ree
eA
DL
e
V
j
e
m
znq
00
1
2
, (7)
0 0
1
.
2
ic iC
ri ri
z
T Z ee
be
e DL i
q n z
m
j e
e V
(8)
(For strong double layer qαVDL >> Tα ). These expres-
sions are obtained from the quasi-neutrality condition at
the layer boundaries:
DLDLDL VzbiiaVzbeVzre nZnn
and
000
zbezbiiazriic nnZnZ
.
After the substitution of equations (4,6,7,8) into the
expression (3) using dimensionless quantities
DLVzz , DLiCiCiC eVZT , DLeAeA eVT ,
DLee V00 , DLii V00 the charge density distri-
bution in the strong double layer will look like:
1
1
2 1
1 1
1 1 .
ic
ea
e be
DL ai ce
ce ai
ai ce
m j
e V
e
e
(9)
Thus, the specific capacity of the strong double layer
(2) is given by:
3 2
1 2 , , , , ,DL e ai ce ic ea be DLC m e I j V (10)
where
,11
11
11
,,,,
1
5.0
0
de
e
I
ea
ic
ceai
aice
ceai
eaicceai
(11)
whose solution has the form:
1 2
1 2 1
, , , ,
2 0.5 1
2 0.5
1 1 1
1 1 .
ic
ea ea
ic ea ai ce
ai ai
ce ce
ic ce ai
ea ai ce
I
e
e e
(12)
Integrating DLC1 on the layer surface, we obtain the
double layer full capacity DLC :
1
3 2
3 2
3 2
, , , ,
2
, , ,
2
, , , .
2
DL
DL
DL
DL DL
S
bee
ic ea ai ce
S DL
ic ea ai cee
be
SDL
bee
ic ea ai ce
DL
C C ds
jm
I ds
e V
Im
j ds
e V
im
I
e V
(13)
Here
DLS
bebe dsji – the electron beam current in the
layer can be associated with the total current through the
layer DLi , which is the sum of electron bei and ion bii
currents. Taking into account the Langmuir ratio
iAeiAbebibeDL mmZiiii 1 , (14)
from which:
iAeiA
DLbe
mmZ
ii
1
1
. (15)
Taking into account that 1iAeiA mmZ , then
DLbe ii , and finally, the double layer capacity is giv-
en by:
ceaieaic
DL
DLe
DL I
V
i
e
m
C ,,,,
2 23
. (16)
Fig. 2 shows the dependence of the reduced double
layer capacity DLDL iC on the layer voltage drop DLV
at zero particles temperatures on the layer boundaries
(ai = 0, ce = 0, ic = 0, ea = 0). It is seen that when the
voltage increasing the double layer capacity decreases.
When the voltage on the layer ~ 100 V and the current
~ 33 kA the layer capacity is ~ 0.5 µF! But when the
voltage ~ 1 kV, and the current has same value, the layer
capacity is reduced to 15 nF.
Taking into account the particles temperature in the
isothermal case reduced double layer capacity can be
written as:
23
23 ,,,,
2
eaDL
ceaieaice
DL
eaDL
TeV
I
e
m
i
TC
. (17)
Fig. 3 shows the dependence of specific double layer
capacity DLeaDL iTC 23
on the relative layer potential
drop eaDL TeV at ceai , eaic .
ISSN 1562-6016. ВАНТ. 2017. №1(107) 221
Nonmonotonic in the top left part of the graph asso-
ciated with the violation of the expression applicability
conditions (17), which is valid for the strong double
layer ( eaDL TeV ), when the penetration of reflected
particles on the opposite side of the layer not taken into
account.
10
1
10
2
10
3
10
4
10
5
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
2
C
D
L
/|
i D
L
|,
p
F
/A
|V
DL
|, V
Fig. 2. The dependence of the reduced double layer ca-
pacity DLDL iC on the layer voltage drop DLV at
0 ai , 0 ce , 0ic , 0ea
10
0
10
1
10
2
10
3
10
4
10
5
10
6
10
7
10
8
10
9
10
10
10
-10
10
-9
10
-8
10
-7
10
-6
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
2
С
D
L
T
3
/2
/|
i D
L
|,
p
F
*
eV
3
/2
/A
|eV
DL
/T
ea
|, rel. u.
Fig. 3. The dependence of the specific double layer ca-
pacity DLeaDL iTC 23
on the relative layer potential drop
eaDL TeV at ceai , eaic
The capacitive component of the current
The differential of the double layer capacity in (1)
can be obtained by differentiating the expression (16) by
DLi and DLV :
DL
DLDL
DL
DL
DL
V
Vdi
id
V
A
dC
2
3
23
, (18)
where ceaieaicIA ,,,10687.1 8 , FV3/2/A.
Substituting it in equation (1) we obtain the equation
for current capacitive component tiC :
3 2
3
.
2
C DL DL DL DL
DL
DL
DL DL
DL
A
i t dt i dV V d i
V
V
i d V
V
(19)
Expressing the double layer current DLi through the
discharge current i and the capacitive current Ci taking
into account that iiC we can write
CCDL iiiii . Substituting it in (19) and
grouping terms, we can rewrite the expression for the
current capacitive component in the form of:
3 2
1 1
2
1
.
2
C DL DL
C C
DL DL
DL
DL
d i V dV
i i
dt A V V dt
d i dV
i
dt V dt
.
(20)
Here are two cases when the capacitive current takes
a positive value ( 0Ci ):
3 21 2
2
1
,
2
C DL
DL C
DL
DL
DL
di dV
V i
dt V A dt
d i dV
i
dt V dt
(21)
and negative value ( 0Ci ):
3 21 2
2
1
.
2
C DL
DL C
DL
DL
DL
di dV
V i
dt V A dt
d i dV
i
dt V dt
(22)
Introducing the notation
dt
dV
V
AV
t DL
DL
DL
232
2
1
, (23)
i
dt
dV
Vdt
id
tF DL
DL
2
1
(24)
and solving the differential equations (21) and (22) we
find the expression for the capacitive component of the
double layer current at 0Ci
t dd
C deFeti
t
0
00
, (25)
222 ISSN 1562-6016. ВАНТ. 2017. №1(107)
and at 0Ci :
t dd
C deFeti
t
0
00
. (26)
These equations are solved by numerical methods.
Fig. 4 shows the dynamics of the double layer current
capacitive component )(tiC (curve 1) and the active
voltage )(tUa (curve 2) in the high-current pulsed dis-
charge.
3.0µ 4.0µ 5.0µ 6.0µ
-150
-100
-50
0
50
100
150
1
2
-15
-10
-5
0
5
10
i C
(t
),
A
U
a
(t
),
k
V
t, s
15
Fig. 4. The dynamics of the double layer current capaci-
tive component )(tiC (1) and the active voltage )(tUa
(2) of the high-current pulsed discharge
It is seen that the current capacitive component has
the form of bursts with positive and negative polarity. It
means that charge-discharge of the double layer capaci-
ty occurs constantly. When the voltage decreases the
capacitive current value increases. This occurs due to
the fact that the double layer capacity increases, that
requires bigger current for its recharging.
The accuracy of calculations was determined by the
verification points, which were calculated from phase
measurements by means of expression
DLDLDLC VViCi , , where – the cyclic fre-
quency of the discharge current “fine structure” at the
given point, VDL – the double layer potential drop
which was assumed equal to the active discharge volt-
age )(tUa , a layer capacity CDL is calculated for the
discharge current values i and )(tUa . The figure shows
that the verification points well agree with the calculat-
ed curve of the current capacitive component.
CONCLUSIONS
The expression for the capacity of space charge elec-
tric double layer in the plasma in quasi-MHD approxi-
mation has been obtained in this paper. The applicabil-
ity area of the found expression has been indicated. The
estimates have shown that in pulsed discharges the ca-
pacity double layer can reach considerable values com-
parable to the capacity of the supply capacitor bank. It
has been shown that when the layer voltage increases its
capacity decreases. So by increasing the voltage drops
from 102 to 105 V, the specific layer capacity decreases
in 3·104 times.
Taking into account the expression for the double
layer capacity, the integral-differential equation for the
capacitive component of the double layer current has
been obtained in this paper. The numerical calculations
have shown a good agreement between the calculated
curve of the current capacitive component and the ex-
perimentally obtained verification points.
REFERENCES
1. Nagendra Singh. Current-free double layers: A re-
view // Physics of Plasmas. 2011, v. 18, № 12,
p. 122105-122105-24.
2. C. Charles. A review of recent laboratory double lay-
er experiments // Plasma Sources Sci. Technol. 2007,
v. 16, p. 1-25.
3. B. Ghosh et al. Electrostatic double layers in a multi-
component drifting plasma having nonthermal electrons
// Brazilian Journal of Physics. 2013, v. 43, № 1,
p. 28-33.
Article received 16.11.2016
ЁМКОСТНАЯ СОСТАВЛЯЮЩАЯ ТОКА ДВОЙНОГО СЛОЯ В ПЛАЗМЕ
Я.О. Гречко, Н.А. Азаренков, Е.В. Бабенко, Д.Л. Рябчиков, И.Н. Середа, М.А. Шовкун, А.Ф. Целуйко
Теоретически и экспериментально исследуются особенности нестационарных двойных слоёв в силь-
ноточных импульсных разрядах. В квази-МГД-приближении получено выражение для ёмкости сильного
двойного слоя и указана область его применимости. Получено уравнение для ёмкостной составляющей тока
двойного слоя. Показана динамика ёмкостной составляющей тока двойного слоя в сильноточном импульс-
ном разряде и приведен способ верификации расчётов.
ЄМНІСНА СКЛАДОВА СТРУМУ ПОДВІЙНОГО ШАРУ В ПЛАЗМІ
Я.О. Гречко, М.О. Азарєнков, Є.В. Бабенко, Д.Л. Рябчіков, І.М. Середа, М.О. Шовкун, О.Ф. Целуйко
Теоретично та експериментально досліджуються особливості нестаціонарних подвійних шарів у си-
льнострумових імпульсних розрядах. У квазі-МГД-наближенні отримано вираз для ємності сильного по-
двійного шару та вказана область його застосування. Отримано рівняння для ємнісної складової струму по-
двійного шару. Показана динаміка ємнісної складової струму подвійного шару в сильнострумовому імпуль-
сному розряді та приведено спосіб верифікації розрахунків.
|