Ozone decay in chemical reactor with the developed inner surface

The ozone decay was investigated in a chemical reactor with a developed inner surface on which it dissociates or absorbs. Ozone concentration behaves differently with time depending on where mainly decays ozone - in the volume or on the reactor surfaces. If ozone mainly decays on the reactor surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Manuilenko, О.V., Golota, V.I.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/122157
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Ozone decay in chemical reactor with the developed inner surface / О.V. Manuilenko, V.I. Golota // Вопросы атомной науки и техники. — 2017. — № 1. — С. 148-151. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-122157
record_format dspace
spelling irk-123456789-1221572017-06-29T03:02:53Z Ozone decay in chemical reactor with the developed inner surface Manuilenko, О.V. Golota, V.I. Низкотемпературная плазма и плазменные технологии The ozone decay was investigated in a chemical reactor with a developed inner surface on which it dissociates or absorbs. Ozone concentration behaves differently with time depending on where mainly decays ozone - in the volume or on the reactor surfaces. If ozone mainly decays on the reactor surface, the ozone concentration decreases with time as exp(-δt) , where δ is determined by the decay process at the inner surface of the reactor and its total area. If ozone decay occurs primarily in the volume, the ozone concentration decreases with time as 1/(1+σt), where σ is determined by the common process of ozone decay in the volume. Исследована кинетика распада озона в реакторе с развитой внутренней поверхностью, на которой может происходить его распад. В зависимости от того, какой из процессов распада является основным – распад в объёме, или распад на поверхности - концентрация озона ведёт себя по-разному со временем. Если распад озона происходит, в основном, на поверхности, то его концентрация уменьшается со временем пропорционально exp(-δt), где δ определяется процессом распада на внутренней поверхности реактора и её полной площадью. Если же распад озона происходит, в основном, в объёме, то его концентрация уменьшается со временем пропорционально 1/(1+σt), где σ определяется обычным процессом распада озона в объёме. Досліджено кінетику розпаду озону в реакторі з розвиненою внутрішньою поверхнею, на якій може відбуватися його розпад. Залежно від того, який із процесів розпаду є основним  розпад в об'ємі або розпад на поверхні  концентрація озону поводиться по-різному з часом. Якщо розпад озону відбувається, в основному, на поверхні, то його концентрація зменшується з часом пропорційно exp(-δt), де δ визначається процесом розпаду на внутрішній поверхні реактора та її повною площею. Якщо ж розпад озону відбувається, в основному, в об'ємі, то його концентрація зменшується з часом пропорційно 1/(1+σt), де σ визначається звичайним процесом розпаду озону в об'ємі. 2017 Article Ozone decay in chemical reactor with the developed inner surface / О.V. Manuilenko, V.I. Golota // Вопросы атомной науки и техники. — 2017. — № 1. — С. 148-151. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 52.75.-d, 52.77.Fv, 52.80.Hc, 52.90.+z, 81.20.-n http://dspace.nbuv.gov.ua/handle/123456789/122157 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Manuilenko, О.V.
Golota, V.I.
Ozone decay in chemical reactor with the developed inner surface
Вопросы атомной науки и техники
description The ozone decay was investigated in a chemical reactor with a developed inner surface on which it dissociates or absorbs. Ozone concentration behaves differently with time depending on where mainly decays ozone - in the volume or on the reactor surfaces. If ozone mainly decays on the reactor surface, the ozone concentration decreases with time as exp(-δt) , where δ is determined by the decay process at the inner surface of the reactor and its total area. If ozone decay occurs primarily in the volume, the ozone concentration decreases with time as 1/(1+σt), where σ is determined by the common process of ozone decay in the volume.
format Article
author Manuilenko, О.V.
Golota, V.I.
author_facet Manuilenko, О.V.
Golota, V.I.
author_sort Manuilenko, О.V.
title Ozone decay in chemical reactor with the developed inner surface
title_short Ozone decay in chemical reactor with the developed inner surface
title_full Ozone decay in chemical reactor with the developed inner surface
title_fullStr Ozone decay in chemical reactor with the developed inner surface
title_full_unstemmed Ozone decay in chemical reactor with the developed inner surface
title_sort ozone decay in chemical reactor with the developed inner surface
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2017
topic_facet Низкотемпературная плазма и плазменные технологии
url http://dspace.nbuv.gov.ua/handle/123456789/122157
citation_txt Ozone decay in chemical reactor with the developed inner surface / О.V. Manuilenko, V.I. Golota // Вопросы атомной науки и техники. — 2017. — № 1. — С. 148-151. — Бібліогр.: 11 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT manuilenkoov ozonedecayinchemicalreactorwiththedevelopedinnersurface
AT golotavi ozonedecayinchemicalreactorwiththedevelopedinnersurface
first_indexed 2025-07-08T21:15:50Z
last_indexed 2025-07-08T21:15:50Z
_version_ 1837114960068476928
fulltext ISSN 1562-6016. ВАНТ. 2017. №1(107) 148 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2017, № 1. Series: Plasma Physics (23), p. 148-151. OZONE DECAY IN CHEMICAL REACTOR WITH THE DEVELOPED INNER SURFACE О.V. Manuilenko, V.I. Golota National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: ovm@kipt.kharkov.ua The ozone decay was investigated in a chemical reactor with a developed inner surface on which it dissociates or absorbs. Ozone concentration behaves differently with time depending on where mainly decays ozone - in the volume or on the reactor surfaces. If ozone mainly decays on the reactor surface, the ozone concentration decreases with time as )exp( t , where  is determined by the decay process at the inner surface of the reactor and its total area. If ozone decay occurs primarily in the volume, the ozone concentration decreases with time as )1/(1 t , where  is determined by the common process of ozone decay in the volume. PACS: 52.75.-d, 52.77.Fv, 52.80.Hc, 52.90.+z, 81.20.-n INTRODUCTION Ozone is an environmentally friendly oxidant [1]. It can be used in a wide range of plasma-chemical technologies in various fields of human activity, such as medicine and veterinary medicine [2], agriculture [3], food production and storage, waste recycling [4-6] and other. This paper is devoted to the usage of ozone in food storage. The development of ozone technologies includes solution of the three major problems: the problem of energy efficient ozone production, the problem of ozone delivery, with minimal loss, to the interaction point, and the problem of the chemical interaction of ozone with the substance to be treated. The first problem was solved with the help of barrier-free ozonizer [7] based on the streamer discharge [8-11]. The paper is devoted to the solution of the second problem. The ozone decay in the refrigerated container for the transportation of perishable products is investigated. The loaded container can be considered as a chemical reactor with a developed inner surface on which the ozone dissociates or absorbs. Ozone is synthesized in the barrier-free streamer discharge ozonizer with the high-speed air-flow. Only a given part of the circulating cooling air flow is passed through the ozonizer. After switching ozonizer off, the ozone concentration in reactor decreases with time as a result of the ozone decay in the volume and on the inner surfaces of reactor. It was found that ozone concentration behaves differently with time depending on where mainly decays ozone - in the volume or on the reactor surfaces. If ozone mainly decays on the reactor surface, the ozone concentration decreases with time proportional to )exp( t , where  is determined by the decay process at the inner surface of the reactor and its total area. If ozone decay occurs primarily in the volume, the ozone concentration decreases with time as )1/(1 t , where  is determined by the common process of ozone decay in the volume. The analytical expressions for ozone concentration in the reactor have been obtained as function of time and parameters, such as the initial ozone concentration, the reaction rate constants, temperature, humidity, the reactor volume and its inner surface. It is shown that the analytical results are in good agreement with the experimental data. THEORY, EXPERIMENT AND DISCUSSION Most of the known data on the ozone decomposition can be explained in terms of the simple atomic mechanism [1]:     OOO f k rk 23 , 23 2OOO O f k  . (1) In the equations (1)  = {N2, O2, H2O, O3, CO2, He, Ar, N2O}. )(Tk f  is the rate constant of the forward reaction. It depends on the temperature T like the rest of the reaction rate constants. )(Tk r  is the reverse reaction rate constant, )(Tk O f is a forward reaction rate constant. The forward reaction in first equation of (1) shows unimolecular ozone decay. This reaction is not elementary. It consists of a multi-stage process which includes activation and decay of the excited molecule through the activated complex. The reverse reaction is also not elementary. It flows in two biomolecular stages: formation of excited ozone with subsequent relaxation. The second reaction in (1) is exothermic. The excess energy is distributed over the vibrational degrees of freedom of the oxygen molecule. As a rule, vibrationally excited oxygen relaxes to the ground state. The system of kinetic equations describing the ozone decay mechanism (1), if  = {N2, O2, H2O, O3}, generally is the following: OO O frOOfO O CCkCkCCCkC dt dC 323 3         , (2) OO O frOOfO O CCkCkCCCkC dt dC 323 2 2        , (3) OO O frOOfO O CCkCkCCCkC dt dC 323         , (4) where )(tC  is a concentration of  . For  = {N2, H2O}, the density of particles )(tC  may depend on time only through the initial conditions. Therefore, 2N C = const, OH C 2 = const. The following equation can be obtained using the method of steady-state concentrations for O: ISSN 1562-6016. ВАНТ. 2017. №1(107) 149           )()()( )()( )( 32 3 tCktCktC tCktC tC O O frO fO O . (5) It is convenient to introduce the following notations:     )()(),( tCTkTtF f ,     )()(),( tCTkTtG r . (6) The equations (2), (3) may be presented in a simple form: 2 3 32 3 2 O O O fO O fO C CkGC Fk dt dC   , (7) 2 3 32 2 3 O O O fO O fO C CkGC Fk dt dC   . (8) The numerical estimations of F and G , using the rate constants of the corresponding reactions from [1], for the ozone-air mixture at the atmospheric pressure and the temperature T ~ 300 К, for the mass ozone concentration 3O MC < 20 g/m 3 and water concentration OH MC 2 < 25 g/m 3 , show that the main input to F will be achieved due to ozone decay at the collision with nitrogen. Ozone collision with oxygen and water gives the input to F by several times lower. Ozone collision with ozone gives the input by two orders lower than the ozone decay on nitrogen. This allows highly accurate calculation of F in accordance with the initial densities of nitrogen, water and oxygen – F  2 2 )( N N f CTk  + OH OH f CTk 2 2 )(  + 2 2 )( O O f CTk  . A similar analysis can be carried out for G . As a result, G with high accuracy, as well as F , does not depend on time and is defined by the initial bulk densities of nitrogen, water and oxygen – G  2 2 )( N N r CTk  + OH OH r CTk 2 2 )(  + 2 2 )( O O r CTk  . The equations (7) and (8) show that in general case the ozone decay is described by the variable order kinetics, from the 1-st to the 2-nd order depending on the parameters of the problem. If 23 OO O f GCCk  , ozone decay is described by the first order kinetics: O fO O fO kFCkdtdC /2/ 33  . In the opposite case, if 23 OO O f GCCk  , ozone decay is described by the second order kinetics: 233 /2/ 2 OO O fO GCFCkdtdC  . By comparing 3 )( O O f CTk  and 2O CG  , for the parameters of ozone-air mixture presented above, it can be found that 2O CG  is higher that 3 )( O O f CTk  by more than two orders, i.e. 3 )( O O f CTk  can be neglected in the equations (7), (8): 2 3 2 3 2 O O O fO C GC Fk dt dC  , 2 3 2 2 3 O O O fO C GC Fk dt dC  , (9) i.e. ozone decay is defined by the second order kinetics. By defining 2 / O O f GCFkk  , the equations (9) can be easily integrated: tkC C C O O O * 3 * 3 3 21  ,   tkC tCk CC O O OO * 3 2* 3* 22 21 3   , (10) where * 33 )0( OO CtC  , * 22 )0( OO CtC  are the initial conditions. At t 0)( 3 tC O , * 22 )( OO CtC   * 3 5.1 O C . If the set of experimental points for )( 3 kO tC is built in the coordinates { k t , 1/ )( 3 kO tC }, a straight line with the tangent ratio equal to k2 can be obtained: 1/ )( 3 tC O = 1/ * 3O C + kt2 . (11) It can be shown that the system of equations (9) corresponds to the following ozone decay scheme: 23 32 OO k  , where the effective «reaction rate constant» k is obviously dependant on the initial densities of nitrogen, water and oxygen as well as on the reaction rate constants which are included in the scheme (1). The ozone decay on the surface can be included in the equations (7), (8). To do this, the continuity equations should be integrated over the volume: 2 3 32 3 3 2)( O O O fO O f O O C CkGC Fk div t C      , (12) 2 3 32 2 2 3)( O O O fO O f O O C CkGC Fk div t C      , (13) where 3O   , 2O   are the ozone and oxygen fluxes. As a result, the following equations can be obtained: VC CkGC Fk Sd dt dN O O O fO O f S O O 2 3 32 3 3 2     , (14) VC CkGC Fk Sd dt dN O O O fO O f S O O 2 3 32 2 2 3     . (15) Here, V is a vessel volume where ozone decay takes place, S is a surface limiting the volume V , 3O N , 2O N are the number of particles in volume V . The fluxes of particles to the surface S can be estimated in the following way: 3333 )( OOTO Cvv O   , 2222 )( OOTO Cvv O   , (16) where 3OT v  , 2OT v  are the thermal particle velocities, 3O v  , 2O v  are the convective velocities. After the integration over the container surface the following expression can be obtained for a number of particles reaching the container surface: SCvN OOO 333   , SCvN OOO 222   , (17) where 3O v , 2O v are particle velocities,  is a coefficient considering the problem geometry. By introducing the probability of the particle decay on the surface 3O  , 2O  , the equations (14), (15) can be presented in the following way: 333 2 3 32 3 2 OOOO O O fO O fO C V S vC CkGC Fk dt dC    , (18) 222 2 3 32 2 3 OOOO O O fO O fO C V S vC CkGC Fk dt dC    . (19) Further, only the equation (18) will be considered. In accordance with the calculations for the ozone-air mixture at the atmospheric pressure and the initial mass concentrations of ozone 3O MC  20 g/m 3 ,   32 / O O fO O f CkGCFkK  does not depend on time and is defined by the initial concentration of reagents. This 150 ISSN 1562-6016. ВАНТ. 2017. №1(107) allows integration of the equation (18) using substitution ))(2exp()( 3 dttCKtu O : 0 2 2  dt du V S dt ud  , (20) where 33 OO v   . The solution of (20) can be presented in the following way: )/exp()( 21 VStCCtu  . After simple transformations for )( 3 tC O , the following expression may be obtained: )exp( )exp( 2 1 )( 21 2 3 t V S CC t V S V S C K tC O      . (21) Taking into consideration that at the initial time * 33 )0( OO CtC  , after substitution in (21), the following expression can be obtained: )/()( * 3 * 321 OO bCabCCC  , (22) where Kb 2 , VSa / . This allows rewriting the solution (21) in the following way: )]exp(1[ )exp( )( * 3 * 3 3 atbCa ataC tC O O O    . (23) The solution (23), where ozone decay in volume and on the surface is taken into consideration, differs from the solution (10), where ozone decay is considered to be only in volume. In (23), the multiplier )exp( at appeared. The multiplier is defined only by the decay on the walls. If it is dominant, ozone decay is determined by the decay on the walls, but not by the decay in the volume. The limiting cases should be analyzed. The expression (23) can be rewritten as: )]exp(1[1 )exp()( * 3 * 3 3 at a bC at C tC OO O    . (24) Let us assume that 1/* 3 abC O . This means either small initial ozone concentrations or large surface areas in relation to the volume, or both at the same time: 1* 3  O C , 1/ VS . As the denominator of (24) has the product abCat O /)]exp(1[ * 3  in which 1/* 3 abC O , and 1)]exp(1[  at , )/)]exp(1[1/(1 * 3 abCat O  may be expanded as xx  1)1/(1 . The following expression may be obtained: )exp( )( * 3 3 at C tC O O  . (25) It is shown that ozone decay is defined only by the decay on the surface. Let us assume that 1/* 3 abC O . This means either large initial ozone concentrations or small surface areas in relation to the volume, or both at the same time. Under large initial ozone concentrations, the expression (24) cannot be applied, as it considers that K does not depend on time and is defined by the initial concentrations of reagents. In this case, the equations (18), (19) should be solved numerically. Therefore, let us analyze the case 1a , taking into consideration that K does not depend on time. In (24), )exp( at may be expanded: tbC at tbCC tC OOO O * 3 * 3 * 3 3 11 1)(     . (26) The first term in the right part (26) is the solution (10) for the ozone decay in the vessel volume, and the second term defines a small influence of the wall. If the set of experimental points for )( 3 kO tC is built in the coordinates { k t , ))(/ln( 33 * kOO tCC }, the curve ))(/ln( 33 * kOO tCC = ]/))exp(1(1ln[ * 3 aatbCat kOk  will be obtained. At k t = 0, it starts from ))0(/ln( 33 * OO CC = 0, and at  k t it is almost straight: ]1ln[))(/ln( * 3 3 * 3 a bC attCC O kkOO  . (27) Thus, there are two limiting modes of ozone decay in the vessel. The first mode considers small initial ozone concentrations, or large surface areas in relation to the volume, or both at the same time. This mode can be called the surface dominated ozone decay mode. In this case, ozone concentration decreased in accordance with the exponential law )exp()( * 33 tCtC OO  , where the exponent is determined by the surface – VS /  . The second mode can be called the volume dominated ozone decay mode. This mode is realized when the surface areas are small in relation to the volume, and ozone concentrations are not too large. In this case )1/()( * 33 tCtC OO  , and the ozone decay is determined by the decay in the vessel volume. Figure shows ozone decay in the empty and differently filled container for perishable products transportation. Ozone decay in the empty and differently filled container. Concentration vs time, as well as its approximation using (10), (23). The empty container corresponds to the volume dominated ozone decay mode, and the filled container corresponds to the surface dominated ozone decay mode The ozone concentrations vs time at given temperature and humidity are presented in Figbre a. The initial ozone concentrations are little bit different. The approximations of experimental data by (10) and (23) for empty container are also shown in Figure a. The equation (23) was used for approximation of experimental data in the filled container (see Figure a). It is clear that equations (10) and (23) are good approximations for ozone decay in empty and filled b a c ISSN 1562-6016. ВАНТ. 2017. №1(107) 151 containers. Figure b shows ozone concentration vs time for empty container in the coordinates { k t , 1/ )( 3 kO tC }, and its approximation by (10) and (23) with sufficiently small a . This is the volume dominated ozone decay mode. Figure c show ozone concentration vs time for differently filled container in the coordinates { k t , ))(/ln( 33 * kOO tCC }, and its approximation by (24). This is the surface dominated ozone decay mode. Due to increase of the container filling, the decay of ozone on its inner surface increases. This leads to an increase of the parameter a in (24), (25), (27), as can be seen from the Figure, c. REFERENCES 1. V.V. Lunin, M.P. Popovich, S.N. Tkachenko. Physical chemistry of ozone. М.: "MSU Publishing house", 1998. 2. V.P. Koshevoj, S.Ya. Fedorenko, S.V. Naumenko, M.M. Ivanchenko, V.P. Besedovs’kyj, O.V. Onishchenko, A.M. Pasternak, L.V. Chujko, V.I. Golota, G.V. Тaran, M.M. Kravtsov. Ozone in obstetrics, gynecology and andrology // Veterinary Medicine of the Ukraine (Veterinarnaja Meditsina Ukrainy). 2014, № 4 (218), p. 22-25. 3. V.I. Golota, G.V. Тaran, V.P. Petrenkova. Fundamentals of ozone-air technology of seeds preparation for sowing // Academic Life (Nauchnaja Zhizn’). 2014, № 5, p. 62-72. 4. V.I. Golota, О.V. Manuilenko, G.V. Тaran, А.S. Pismenetskii, А.А. Zamuriev, V.А. Benitskaja, Yu.V. Dotsenko. Ozone disintegration kinetics in the reactor for decomposition of tyres // Problems of Atomic Science and Technology. Ser. “Plasma Electronics and New Meth. of Accel”. 2010, № 4 (68), p. 204-209. 5. V.I. Golota, O.V. Manuilenko, G.V. Taran, Yu.V. Dotsenko, A.S. Pismenetskii, A.A. Zamuriev, V.A. Benitskaja. Ozone decay in chemical reactor for ozone-dynamical disintegration of used tyres // Problems of Atomic Science and Technology. Ser. “Plasma Physics”. 2011, № 1 (71), p. 119-121. 6. V.I. Golota, G.V. Taran, A.A. Zamuriev, M.A. Yegorov, L.L. Mikhalskaia, E.E. Prokhach. Ozone treatment of hydrazine-containing water solution // Problems of Atomic Science and Technology. Ser. “Plasma Electronics and New Meth. of Accel.”. 2013, № 4 (86), p. 325-327. 7. V. Golota, O. Yegorov, V. Mykhaylov, V. Mukhin, G. Taran, S. Shilo. Ozone generator. USA Patent № 6554486 B2, 2000, p. 15. 8. O.V. Manuilenko, V.I. Golota. Computer simulation of positive streamer dynamics in strongly non-uniform electric fields in air. Effect of applied voltage on a streamer velocity for different needle radii // Problems of Atomic Science and Technology. Ser. “Plasma Physics”. 2014, № 6 (94), p. 187-190. 9. O.V. Manuilenko. Computer simulation of positive streamer dynamics in uniform and non-uniform electric fields in air // Problems of Atomic Science and Technology. Ser.“Plasma Electronics and New Meth. of Accel.”. 2013, № 4, p. 194-199. 10. O.V. Manuilenko, V.I. Golota. Particularities of the negative streamer propagation in homogeneous and inhomogeneous electric fields, Computer simulation // Problems of Atomic Science and Technology. Ser. “Plasma Physics”. 2013, № 1, p. 171-173. 11. O.V. Manuilenko, V.I. Golota. Numerical simulation of negative streamers in strong non-uniform electric fields in nitrogen. Effect of needles radius and applied voltage on streamer velocity // Problems of Atomic Science and Technology. Ser. “Plasma Electronics and New Meth. of Accel.”. 2013, № 4, p. 189-193. Article received 25.11.2016 РАСПАД ОЗОНА В ХИМИЧЕСКОМ РЕАКТОРЕ С РАЗВИТОЙ ВНУТРЕННЕЙ ПОВЕРХНОСТЬЮ О.В. Мануйленко, В.И. Голота Исследована кинетика распада озона в реакторе с развитой внутренней поверхностью, на которой может происходить его распад. В зависимости от того, какой из процессов распада является основным – распад в объёме, или распад на поверхности  концентрация озона ведёт себя по-разному со временем. Если распад озона происходит, в основном, на поверхности, то его концентрация уменьшается со временем пропорционально )exp( t , где  определяется процессом распада на внутренней поверхности реактора и её полной площадью. Если же распад озона происходит, в основном, в объёме, то его концентрация уменьшается со временем пропорционально )1/(1 t , где  определяется обычным процессом распада озона в объёме. РОЗПАД ОЗОНУ В ХІМІЧНОМУ РЕАКТОРІ З РОЗВИНЕНОЮ ВНУТРІШНЬОЮ ПОВЕРХНЕЮ О.В. Мануйленко, В.І. Голота Досліджено кінетику розпаду озону в реакторі з розвиненою внутрішньою поверхнею, на якій може відбуватися його розпад. Залежно від того, який із процесів розпаду є основним  розпад в об'ємі або розпад на поверхні  концентрація озону поводиться по-різному з часом. Якщо розпад озону відбувається, в основному, на поверхні, то його концентрація зменшується з часом пропорційно )exp( t , де  визначається процесом розпаду на внутрішній поверхні реактора та її повною площею. Якщо ж розпад озону відбувається, в основному, в об'ємі, то його концентрація зменшується з часом пропорційно )1/(1 t , де  визначається звичайним процесом розпаду озону в об'ємі.