The size effect and x-ray fluorescenc spectra of metallic nanoparticles

X-ray fluorescence scattering spectra of metallic nanoparticles (copper (Cu), aluminum (Al), titanium (Ti)) are studied. Nanostructures were fabricated by nonequilibrium metallic vapor-induced desorption from plasma blob which was generated by pulse electrothermal plasma accelerator. It is discovere...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Kolyada, Yu.E., Savinkov, N.A., Bizyukov, A.A., Bulanchuk, O.N.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/122168
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The size effect and x-ray fluorescenc spectra of metallic nanoparticles / Yu.E. Kolyada, N.A. Savinkov, A.A. Bizyukov, O.N. Bulanchuk // Вопросы атомной науки и техники. — 2017. — № 1. — С. 179-182. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-122168
record_format dspace
spelling irk-123456789-1221682017-06-29T03:02:56Z The size effect and x-ray fluorescenc spectra of metallic nanoparticles Kolyada, Yu.E. Savinkov, N.A. Bizyukov, A.A. Bulanchuk, O.N. Низкотемпературная плазма и плазменные технологии X-ray fluorescence scattering spectra of metallic nanoparticles (copper (Cu), aluminum (Al), titanium (Ti)) are studied. Nanostructures were fabricated by nonequilibrium metallic vapor-induced desorption from plasma blob which was generated by pulse electrothermal plasma accelerator. It is discovered the shift of X-ray spectra on de-pending of particle sizes. The shift of X-ray fluorescence scattering spectra for Kα-and Kβ-lines is registered for Аl nanostructures with average size ≈14 nm. The analogical shift is not observed for Ti and Cu particles with greater size. Исследуются рентгенофлуоресцентные спектры рассеяния металлических наночастиц меди, титана и алюминия. Наноструктуры были получены методом неравновесной десорбции на стеклянную подложку металлического пара из плазменного сгустка. Для этого использовался импульсный электротермический плазменный ускоритель. Анализ рентгеновских спектров позволил обнаружить их смещение по частоте в зависимости от размеров наночастиц. Для наноструктур Аl, имеющих средний размер ≈14 нм, зафиксирован сдвиг рентгенофлуоресцентных спектров рассеяния для Kα- и Kβ-линий. Аналогичный сдвиг отсутствует для частиц титана и меди, имеющих больший размер наночастиц. Досліджуються рентгенофлюоресцентні спектри розсіювання металевих наночастинок міді, титану та алюмінію. Наноструктури було виготовлено методом нерівноважної десорбції на скляну підкладку металевої пари із плазмового згустка. Для цього використовувався імпульсний електротермічний плазмовий прискорювач. Аналіз рентгенівських спектрів дозволив встановити їх зміщення по частоті в залежності від розмірів частинок. Для наноструктур Аl, що мають середній розмір ≈14 нм, зареєстровано зміщення рентгеноф-люоресцентних спектрів розсіювання для Kα- та Kβ -ліній. Аналогічне зміщення відсутнє для частинок титану та міді з більшими розмірами. 2017 Article The size effect and x-ray fluorescenc spectra of metallic nanoparticles / Yu.E. Kolyada, N.A. Savinkov, A.A. Bizyukov, O.N. Bulanchuk // Вопросы атомной науки и техники. — 2017. — № 1. — С. 179-182. — Бібліогр.: 17 назв. — англ. 1562-6016 PACS: 78.70.En, 81.16.-b http://dspace.nbuv.gov.ua/handle/123456789/122168 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Kolyada, Yu.E.
Savinkov, N.A.
Bizyukov, A.A.
Bulanchuk, O.N.
The size effect and x-ray fluorescenc spectra of metallic nanoparticles
Вопросы атомной науки и техники
description X-ray fluorescence scattering spectra of metallic nanoparticles (copper (Cu), aluminum (Al), titanium (Ti)) are studied. Nanostructures were fabricated by nonequilibrium metallic vapor-induced desorption from plasma blob which was generated by pulse electrothermal plasma accelerator. It is discovered the shift of X-ray spectra on de-pending of particle sizes. The shift of X-ray fluorescence scattering spectra for Kα-and Kβ-lines is registered for Аl nanostructures with average size ≈14 nm. The analogical shift is not observed for Ti and Cu particles with greater size.
format Article
author Kolyada, Yu.E.
Savinkov, N.A.
Bizyukov, A.A.
Bulanchuk, O.N.
author_facet Kolyada, Yu.E.
Savinkov, N.A.
Bizyukov, A.A.
Bulanchuk, O.N.
author_sort Kolyada, Yu.E.
title The size effect and x-ray fluorescenc spectra of metallic nanoparticles
title_short The size effect and x-ray fluorescenc spectra of metallic nanoparticles
title_full The size effect and x-ray fluorescenc spectra of metallic nanoparticles
title_fullStr The size effect and x-ray fluorescenc spectra of metallic nanoparticles
title_full_unstemmed The size effect and x-ray fluorescenc spectra of metallic nanoparticles
title_sort size effect and x-ray fluorescenc spectra of metallic nanoparticles
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2017
topic_facet Низкотемпературная плазма и плазменные технологии
url http://dspace.nbuv.gov.ua/handle/123456789/122168
citation_txt The size effect and x-ray fluorescenc spectra of metallic nanoparticles / Yu.E. Kolyada, N.A. Savinkov, A.A. Bizyukov, O.N. Bulanchuk // Вопросы атомной науки и техники. — 2017. — № 1. — С. 179-182. — Бібліогр.: 17 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kolyadayue thesizeeffectandxrayfluorescencspectraofmetallicnanoparticles
AT savinkovna thesizeeffectandxrayfluorescencspectraofmetallicnanoparticles
AT bizyukovaa thesizeeffectandxrayfluorescencspectraofmetallicnanoparticles
AT bulanchukon thesizeeffectandxrayfluorescencspectraofmetallicnanoparticles
AT kolyadayue sizeeffectandxrayfluorescencspectraofmetallicnanoparticles
AT savinkovna sizeeffectandxrayfluorescencspectraofmetallicnanoparticles
AT bizyukovaa sizeeffectandxrayfluorescencspectraofmetallicnanoparticles
AT bulanchukon sizeeffectandxrayfluorescencspectraofmetallicnanoparticles
first_indexed 2025-07-08T21:16:58Z
last_indexed 2025-07-08T21:16:58Z
_version_ 1837115029205286912
fulltext ISSN 1562-6016. ВАНТ. 2017. №1(107) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2017, № 1. Series: Plasma Physics (23), p. 179-182. 179 THE SIZE EFFECT AND X-RAY FLUORESCENC SPECTRA OF METALLIC NANOPARTICLES Yu.E. Kolyada 1 , N.A. Savinkov 2 , A.A. Bizyukov 3 , O.N. Bulanchuk 2 1 Mariupol State University, Mariupol, Ukraine; 2 Donetsk State University of Management, Mariupol, Ukraine;. 3 V.N. Karazin Kharkiv National University, Kharkov, Ukraine E-mail: yukol@ukr.net X-ray fluorescence scattering spectra of metallic nanoparticles (copper (Cu), aluminum (Al), titanium (Ti)) are studied. Nanostructures were fabricated by nonequilibrium metallic vapor-induced desorption from plasma blob which was generated by pulse electrothermal plasma accelerator. It is discovered the shift of X-ray spectra on de- pending of particle sizes. The shift of X-ray fluorescence scattering spectra for Kα-and Kβ-lines is registered for Аl nanostructures with average size ≈14 nm. The analogical shift is not observed for Ti and Cu particles with greater size. PACS: 78.70.En, 81.16.-b INTRODUCTION At last decades the explosive development of nanotechnologies and related new scientific tendencies are under high interest for researching of metallic nanoparticles and nanostructures which demonstrates unique electrophysical and optical properties that is not typical for isolated atoms or solid state metals [1-3]. These properties are the basis for production of nanocomposite metallic coatings [4, 5], the manufactur- ing of emitters and cathode components of electronic devices using nanostructured materials [6], the con- struction of nanoscale carbon materials fullerenes and nanotubes [7]. It is known that changing of size and shape of nanoparticle alters its electronic structure and optical properties (size effect). The size effect arises in many experimental researches. The intensity dependencies of gold cluster photoluminescence on number of atoms in cluster are shown in [8,9]. It was researched the optical Raman scattering spectra of the nanocrystals (with particle size 5 nm) [10]. It is theoretically proved that main maximum of op- tical Raman scattering spectra in frequency range (500…520) sm -1 displaces significantly to lower energy for nanostructures with a smaller size. For nanoclusters of transition metals (Ni, Co, Cr) it is experimentally observed the shift of photoelectron spectra and "core" electrons binding energies in atoms in dependence of nanoclusters size [11]. Now the investigation of nanoparticles X-ray spectra is under the great interest because it is insufficiently understood. Particularly the X-ray shifts of manganese K-lines are obtained for nanoparticles oxides MnO, Mn3O4 and MnO2 relatively to the corresponding macro material [12]. However in mentioned above references and many analogical works the electromagnetic proper- ties of small particles were researched only for particles with a size less than 10 nm The purpose of the work is the investigation of X- ray nanoparticles (Cu, Al, Ti) fluorescence scattering spectra and making comparison it with macro materials spectra. 1. EXPERIMENTAL DEVICE The electrothermal plasma accelerator (ETPA) (Fig. 1) is used for metallic nanoparticles production. The body 1 is made of dialectical rigid thick-walled tube with length 40 sm. The inner diameter is 8 mm and wall thickness is 1 sm. The edge of dialectical body is molded by metallic barrels 3 and 4. The changeable rod cathode 2 with diameter 6 mm is attached to the barrel 3 by means of threaded connection. The cathode is made of nanoparticles material. The more detailed description of ETPA and its application in some scientific research- es is shown in [13, 14]. a b Fig. 1. The electrothermal plasma accelerator (a) and its electrical power supply circuit (b) 2. EXPERIMENTAL RESULTS For collecting and analysis of nanoparticles are used glass substrates with size (3 х 3) sm positioned outside of the ring anode 4 on the distance of (6…8) sm. The investigation of nanoparticles shapes and sizes was car- ried out by a scanning electron microscope JSM - 6390LV (JEOL company, Japan). On one photo there are 200…400 particles of different sizes [15]. By using a such method of plasma blob generation there are atoms and molecules of wall material, elec- trodes and air in it. This can result to oxides, nitrides and hydrocarbon groups formation. In the combustion product of high-current discharge arc it is possible the existence and ejection of a droplet fraction of the cath- ode material. Just the cathode is the most affected to mailto:yukol@ukr.net 180 ISSN 1562-6016. ВАНТ. 2017. №1(107) erosion in the discharge. For the clearing of nanoparti- cles generation mechanism the chemical composition of synthesized particles is studied. The method of X-ray fluorescence spectral analysis (XRF) is used. The meas- urements are made by wave X-ray fluorescence spec- trometer ARL OPTIM X-0335 (spectral resolution ≈15 eV for the emission K and K lines). It was car- ried out the quantitative spectral analysis of the nano- particles deposited on the glass substrates and on the cathode material (macro material). Then the elemental composition of macro material was compared with the material composition of the synthesized nanostructures. In the Table the results of such comparison for alu- minum cathode are presented (the percentage ratio by components weight). Table shows that the composition by percentage of the same elements for the cathode macro material and for the aluminum nanoparticles syn- thesized on substrates is essentially different. It is im- portant to note that the series of elements (W, Pb, Ga, Zn) inherent to initial aluminum cathode is fully absent in the nanoparticles composition. The analogous regu- larity is also characteristic for the titanic and copper cathode used in the study. Thus the synthesis of nano- particles under our experiment occurs not due to the "spray" of cathode material droplets but exclusively as the result of the non-equilibrium condensation of super- saturated metal vapor from the discharge region onto the substrate. It is not detected oxides, nitrides and other compounds that could theoretically arise in the dis- charge. The elemental composition of the aluminum nano- particles on glass (right column), the material of the aluminum cathode (center column) and glass substrate (left column) Element glass, m/m aluminum, m/m Al on glass, m/m Si 66.43817 0.421 61.2706138 Na 16.73793 0.0445 11.83023801 Ca 8.064639 0.0595 7.572123027 Mg 4.945297 0.304 3.737892792 Al 2.168323 98.55 13.8725918 K 1.004276 0.0099 0.942180193 S 0.368995 0.064 0.418104503 Fe 0.125915 0.352 0.134101721 Cl 0.079505 0.0435 0.144891514 Px 0.017499 0.0783 0.026974484 Ti 0.015977 0.0062 0.014450616 Cu 0.014836 0.0181 0.01657004 Zr 0.005706 0.005780247 Rb 0.003804 0.004238847 Ni 0.003233 0.0049 0.002312099 Sr 0.003043 0.001926749 Mn 0.002853 0.0034 0.005009547 W 0.0114 Pb 0.0104 Ga 0.0082 Zn 0.0071 100 99.9964 100 In [16] it was calculated the sizes and was carried out the statistical analysis of microscopic cathode mate- rial particles arisen in the pulse high-voltage vacuum discharge. The good correlation between mean free path of Fermi-electrons in corresponding metal and charac- teristic size of the aerosol microparticles follows from obtained data. This feature is characteristic for pulsed heat system. This is why in this study we used the analogous technique: the sample mean of nanoparticles sizes for used cathodes is calculated by known ratio of mean free path of Fermi-electrons F = Ed0/ n0kT (where E – Young modulus; d0 – lattice constant; 0n free-electron concentration in the metal which is determined by value of Hall constant; k – Boltzmann constant; T absolute temperature). For Al: F = lAl =14 nm; for Cu: F = lCu = 30.1 nm and for Ti: F = lTi =85.9 nm. The calculated particle sizes are in a good agreement with the sizes observed by the electron microscope. The X-ray fluorescence spectra are investigated for alumi- num, copper, titanic nanoparticles made by a such method. For this purpose the X-ray fluorescence spec- trometer ARL OPTIM X-0335 (rhodium node) was used. Radiation of Rh K (h 20213 eV) and Rh K (h 2276 eV) lines are applied for the fluorescence excitation. Fig. 2 shows these spectra which are com- pared with the spectra of cathode macro material. On Fig. 2,a,b the fluorescence spectrum of the aluminum nanoparticles has the energy shift with respect to the spectrum of macro material. The shift of K line is E 0.35 eV and K line shift is E 3.81 eV. The analogues shift for titan and copper is not observed. In this case the both lines coincide (Figs. 2,c and 2,d). 3. DISCUSSION The obtained spectra can be explained as follows. It is known that even small changes in the size of the na- noparticles lead to a visible shift of the optical ab- sorption band of nanomaterials. This results to their wide application in optics. Distributed in a transparent matrix metallic nanoparticles with size l < 20 nm reveal unusual optical properties. One example of such sys- tems are known even in ancient times colored glass and stained glass windows of medieval Gothic cathedrals (which are colloidal solutions of metal clusters in a glass matrix) [17]. According to classical optics the ab- sorption spectrum of colloidal solution doesn’t depend on particles size when cluster size D is substantially smaller than the wavelength of incident light: D/λ << 1. Thus the radiation absorption of material doesn’t de- pend on the nanoparticles size for a nanosize (10…100 nm) systems and wavelengths in the optical spectrum. But it is supposed that experimentally regis- tered radiation absorption in the metallic nanoparticles systems occurs due to the size effect associated with the plasmon resonance absorption. The obtained results exhibit that caused by localized plasmons size effect appears in the fluorescence X-ray spectrum of metallic nanoparticles also. Unlike the optical spectra in this case there is resonance absorption of the initial X-ray photons ISSN 1562-6016. ВАНТ. 2017. №1(107) 181 Fig. 2. X-ray spectra of the nanoparticles fluorescence and corresponding macro material: aluminum K (a) and K -line (b) (dashed curve nanoparticle; solid curve – macro material); titanium (both curves coincide) (c); copper (both curves coincide) (d) by K-shell electrons of aluminum atoms (likewise cop- per and titanium atoms). As a result a vacancy appears in the atomic K-shell. On the next stage the vacancy is filled by the electrons of L-shell (L K–transition) which leads to the К lines emission by the aluminum atoms (see Fig. 2,a) and titanium atoms (see Figs. 2,c,d). In the Al and Cu atoms the vacancy is also filled by electrons of M-shell (М2,3 К–transition) that leads to the K emission line (aluminum – Fig. 2,b) and K 13 lines (copper – Fig. 2,d). Under radiation absorption of initial X-rays quanta and simultaneously under fluores- cence excitation processes it also can occur radiationless transitions of electrons, LI LIII and LI LIIIMV – transitions leading to the release of photoelectrons and Auger electrons from atoms. The part of the initial X- ray photon energy is consumed by these processes. The energy decrease of the registered fluorescence quanta in comparison to the energy of the initial X-ray photons indicates on this fact. The energy peaks of the spectral curves Al K on Fig. 2,b are in ≈ (14…15) times less than the energy of the initial emission line of a rhodium anode. The energy peaks of the spectral curves for tita- nium and copper are less than the energy of the initial emission line in ≈5 times and ≈2.55 times respectively. The spectra shift of Al nanoparticles with respect to the aluminum solid (K line is shifted to lower ener- gies, the K line – to the high-energy region – Fig. 2,b,a) indicates to the energy level deformation (K-, L- and M-levels) of the aluminum atom "core" electrons under formation process of nanostructures with the par- ticle size of smaller than a some critical size. For aluminum nanoparticles with size l = 14 nm such deformation takes place and it is not visible for larger nanoparticles: titanium l = 85.9 nm and copper l = 30.1 nm. This deformation is so small that it can’t appear in the optical spectra. On the Fig. 2,b the shift of the two curves maximum for the K -line is ≈0,023 Å that is much smaller than the wavelength of the visible range. Thus in this paper it is proposed a completely new ap- proach to the study of the metallic nanostructures prop- erties by using of X-ray fluorescence spectra for the size and structural analysis of metal nanoparticles. CONCLUSIONS 1. It is synthesized the aluminum, titanium and copper nanoparticles onto dielectric substrates by using ETPA. The fulfilled X-ray spectral analysis (RFA) allows to determine the mechanism of nanoparticle synthesis us- ing technique of the non-equilibrium supersaturated condensation of the plasmoid metal vapor onto the sub- strate. 2. The X-ray fluorescence spectra of aluminum, copper and titanic nanoparticles deposited on the dielectric sub- strates are experimentally obtained and analyzed. These spectra are compared with the spectra of the macro ma- terials of corresponding cathodes. 3. It is found the size effect of the X-ray fluorescence spectra: the fluorescence spectra of aluminum nanopar- ticles (K - and K - line) are shifted with respect to cor- responding spectrum of macro material. There is no such spectral line shift for Ti and Cu nanoparticles with larger size. 182 ISSN 1562-6016. ВАНТ. 2017. №1(107) REFERENCES 1. S.A. Мaier. Plasmonics:Fundamentals and Applica- tions. New York: "Springer", 2007, p. 201. 2. S.V. Gaponenko. Introduction to Nanophotonics. Cambridge: "Cambridge University Press", 2010, p. 465. 3. A.I. Gusev. Nanomaterials, nanostructures, nano- technology. Мoscow: “Fizmatlit”, 2009, p. 416 (in Rus- sian). 4. S.V. Eliseeva, Yu.F. Nasedkina, D.I. Semenzov. Op- tical spectra of nano composite medium and films with metallic inclusions // Optics and Spectroscopy. 2014, v. 117, № 6, p. 914-920. 5. M.A. Yarrmolenko, A.A. Rogachov, P.A. Luchnikov, A.B. Rogachov. Preparation of film coatings based on a polymeric matrix with silver nanoparticles by vapor deposition // Nanomaterials and nanostructures – XXI сenture. 2012, № 2, p. 21-25. 6. N.N. Bаlan, E.I. Ivaschov, P.A. Luchnikov, A.B. Nevskiy. Technological features of the formation of the cathode parts of field-emission and tunneling nano- and microdevices // Nanomaterials and nanostructures – XXI сenture. 2012, № 2, p. 36-43. 7. V.V. Кlimov. Nanoplasmonika // Uspehi Phisicheskih Nauk. 2008, v. 178, № 8, p. 875-880 (in Russian). 8. J. Zheng, C. Zhang, R.M. Dickson. Highly fluores- cent, water-soluble, size-tunable gold quantum dots // Physical Review Letters. 2004, v. 93, № 7, p. 077402-1 –077402-4. 9. J.I. Gonzalez, T.-H. Lee, M.D. Barnes, Y. Antoku, R.M.Dickson. Quantum mechanical single-gold- nanocluster electroluminescent light source at rоom temperature // Physical Review Letters. 2004, v. 93, № 14, p. 147402-147405. 10. V.G. Kravets. Silicon nanoparticles: photolumines- cence, the complex refractive index and their relation- ship with the band structure // Optics and Spectroscopy. 2013, v. 114, № 2, p. 253-259 (in Russian). 11. V.D. Bormann, M.A. Pushkin, V.N. Tronin, V.I. Тroyan. A study of the evolution of the electronic properties of transition metals nanoclusters on the graphite surface // Experimental and Theoretical Phys- ics Journal. 2010, v. 137, № 6, p. 1151-1174. 12. A.A. Naberezhnov, A.A. Petrunin, A.E. Sovestnov, D.A. Kurdyukov, E.V. Fomin, S.B. Vahruschev. Shifts of X-ray lines of manganese in its oxide nanoparticles // Journal Technical Physics Letters. 2015, v. 41, № 24, p. 89-94. 13. Yu.E. Kolyada, V.I. Fedun. Pulse еlectrothermal Plasma Accelerators and its Application in scientific Researches // Problems of Atomic Science and Technol- ogy. Series “Plasma Electronics and New Methods of Acceleration”. 2015, v. 98, № 4, p. 325-330. 14. Yu.E. Kolyada, V.I. Fedun. Excitation of elastic pulses by powerful plasmoids in the acoustic waveguide // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Accelera- tion”. 2008, v. 56, № 4, p. 260-263. 15. Yu.E. Kolyada, V.I. Fedun, V.I. Tyutyunnikov, N.A. Savinkov, A.E. Kapustin. Formation Mechanism of the Metallic Nanostructures Using Pulsed Axial Eltctrothermal Plasma Accelerator // Problems of Atom- ic Science and Technology. Series: “Plasma Electronics and New Methods of Acceleration”. 2013, v. 86, № 4, p. 297-300. 16. Yu.E. Kolyada, V.I. Fedun, S.P. Desyatsky. Statisti- cal analysis of the droplet fraction of explosion- emission cathode // Problems of Atomic Science and Technology. Series“Plasma Electronics and New Meth- ods of Acceleration”. 2006, № 5, p. 113-115. 17. V.V. Кlimov. Nanoplasmonika. Мoscow: “Fizmatlit”, 2009, p. 480 (in Russian). Article received 29.11.2016 РАЗМЕРНЫЙ ЭФФЕКТ И РЕНТГЕНОФЛУОРЕСЦЕНТНЫЕ СПЕКТРЫ МЕТАЛЛИЧЕСКИХ НАНОЧАСТИЦ Ю.Е. Коляда, Н.А. Савинков, A.A. Бизюков, О.Н. Буланчук Исследуются рентгенофлуоресцентные спектры рассеяния металлических наночастиц меди, титана и алюминия. Наноструктуры были получены методом неравновесной десорбции на стеклянную подложку металлического пара из плазменного сгустка. Для этого использовался импульсный электротермический плазменный ускоритель. Анализ рентгеновских спектров позволил обнаружить их смещение по частоте в зависимости от размеров наночастиц. Для наноструктур Аl, имеющих средний размер ≈14 нм, зафиксирован сдвиг рентгенофлуоресцентных спектров рассеяния для Kα- и Kβ-линий. Аналогичный сдвиг отсутствует для частиц титана и меди, имеющих больший размер наночастиц. РОЗМІРНИЙ ЕФЕКТ І РЕНТГЕНОФЛУОРЕСЦЕНТНІ СПЕКТРИ МЕТАЛЕВИХ НАНОЧАСТИНОК Ю.Є. Коляда, М.О. Савінков, О.О.Бізюков, О.М. Буланчук Досліджуються рентгенофлюоресцентні спектри розсіювання металевих наночастинок міді, титану та алюмінію. Наноструктури було виготовлено методом нерівноважної десорбції на скляну підкладку метале- вої пари із плазмового згустка. Для цього використовувався імпульсний електротермічний плазмовий прис- корювач. Аналіз рентгенівських спектрів дозволив встановити їх зміщення по частоті в залежності від роз- мірів частинок. Для наноструктур Аl, що мають середній розмір ≈14 нм, зареєстровано зміщення рентгеноф- люоресцентних спектрів розсіювання для Kα- та Kβ -ліній. Аналогічне зміщення відсутнє для частинок тита- ну та міді з більшими розмірами.