The size effect and x-ray fluorescenc spectra of metallic nanoparticles
X-ray fluorescence scattering spectra of metallic nanoparticles (copper (Cu), aluminum (Al), titanium (Ti)) are studied. Nanostructures were fabricated by nonequilibrium metallic vapor-induced desorption from plasma blob which was generated by pulse electrothermal plasma accelerator. It is discovere...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/122168 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The size effect and x-ray fluorescenc spectra of metallic nanoparticles / Yu.E. Kolyada, N.A. Savinkov, A.A. Bizyukov, O.N. Bulanchuk // Вопросы атомной науки и техники. — 2017. — № 1. — С. 179-182. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-122168 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1221682017-06-29T03:02:56Z The size effect and x-ray fluorescenc spectra of metallic nanoparticles Kolyada, Yu.E. Savinkov, N.A. Bizyukov, A.A. Bulanchuk, O.N. Низкотемпературная плазма и плазменные технологии X-ray fluorescence scattering spectra of metallic nanoparticles (copper (Cu), aluminum (Al), titanium (Ti)) are studied. Nanostructures were fabricated by nonequilibrium metallic vapor-induced desorption from plasma blob which was generated by pulse electrothermal plasma accelerator. It is discovered the shift of X-ray spectra on de-pending of particle sizes. The shift of X-ray fluorescence scattering spectra for Kα-and Kβ-lines is registered for Аl nanostructures with average size ≈14 nm. The analogical shift is not observed for Ti and Cu particles with greater size. Исследуются рентгенофлуоресцентные спектры рассеяния металлических наночастиц меди, титана и алюминия. Наноструктуры были получены методом неравновесной десорбции на стеклянную подложку металлического пара из плазменного сгустка. Для этого использовался импульсный электротермический плазменный ускоритель. Анализ рентгеновских спектров позволил обнаружить их смещение по частоте в зависимости от размеров наночастиц. Для наноструктур Аl, имеющих средний размер ≈14 нм, зафиксирован сдвиг рентгенофлуоресцентных спектров рассеяния для Kα- и Kβ-линий. Аналогичный сдвиг отсутствует для частиц титана и меди, имеющих больший размер наночастиц. Досліджуються рентгенофлюоресцентні спектри розсіювання металевих наночастинок міді, титану та алюмінію. Наноструктури було виготовлено методом нерівноважної десорбції на скляну підкладку металевої пари із плазмового згустка. Для цього використовувався імпульсний електротермічний плазмовий прискорювач. Аналіз рентгенівських спектрів дозволив встановити їх зміщення по частоті в залежності від розмірів частинок. Для наноструктур Аl, що мають середній розмір ≈14 нм, зареєстровано зміщення рентгеноф-люоресцентних спектрів розсіювання для Kα- та Kβ -ліній. Аналогічне зміщення відсутнє для частинок титану та міді з більшими розмірами. 2017 Article The size effect and x-ray fluorescenc spectra of metallic nanoparticles / Yu.E. Kolyada, N.A. Savinkov, A.A. Bizyukov, O.N. Bulanchuk // Вопросы атомной науки и техники. — 2017. — № 1. — С. 179-182. — Бібліогр.: 17 назв. — англ. 1562-6016 PACS: 78.70.En, 81.16.-b http://dspace.nbuv.gov.ua/handle/123456789/122168 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Kolyada, Yu.E. Savinkov, N.A. Bizyukov, A.A. Bulanchuk, O.N. The size effect and x-ray fluorescenc spectra of metallic nanoparticles Вопросы атомной науки и техники |
description |
X-ray fluorescence scattering spectra of metallic nanoparticles (copper (Cu), aluminum (Al), titanium (Ti)) are studied. Nanostructures were fabricated by nonequilibrium metallic vapor-induced desorption from plasma blob which was generated by pulse electrothermal plasma accelerator. It is discovered the shift of X-ray spectra on de-pending of particle sizes. The shift of X-ray fluorescence scattering spectra for Kα-and Kβ-lines is registered for Аl nanostructures with average size ≈14 nm. The analogical shift is not observed for Ti and Cu particles with greater size. |
format |
Article |
author |
Kolyada, Yu.E. Savinkov, N.A. Bizyukov, A.A. Bulanchuk, O.N. |
author_facet |
Kolyada, Yu.E. Savinkov, N.A. Bizyukov, A.A. Bulanchuk, O.N. |
author_sort |
Kolyada, Yu.E. |
title |
The size effect and x-ray fluorescenc spectra of metallic nanoparticles |
title_short |
The size effect and x-ray fluorescenc spectra of metallic nanoparticles |
title_full |
The size effect and x-ray fluorescenc spectra of metallic nanoparticles |
title_fullStr |
The size effect and x-ray fluorescenc spectra of metallic nanoparticles |
title_full_unstemmed |
The size effect and x-ray fluorescenc spectra of metallic nanoparticles |
title_sort |
size effect and x-ray fluorescenc spectra of metallic nanoparticles |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2017 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/122168 |
citation_txt |
The size effect and x-ray fluorescenc spectra of metallic nanoparticles / Yu.E. Kolyada, N.A. Savinkov, A.A. Bizyukov, O.N. Bulanchuk // Вопросы атомной науки и техники. — 2017. — № 1. — С. 179-182. — Бібліогр.: 17 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT kolyadayue thesizeeffectandxrayfluorescencspectraofmetallicnanoparticles AT savinkovna thesizeeffectandxrayfluorescencspectraofmetallicnanoparticles AT bizyukovaa thesizeeffectandxrayfluorescencspectraofmetallicnanoparticles AT bulanchukon thesizeeffectandxrayfluorescencspectraofmetallicnanoparticles AT kolyadayue sizeeffectandxrayfluorescencspectraofmetallicnanoparticles AT savinkovna sizeeffectandxrayfluorescencspectraofmetallicnanoparticles AT bizyukovaa sizeeffectandxrayfluorescencspectraofmetallicnanoparticles AT bulanchukon sizeeffectandxrayfluorescencspectraofmetallicnanoparticles |
first_indexed |
2025-07-08T21:16:58Z |
last_indexed |
2025-07-08T21:16:58Z |
_version_ |
1837115029205286912 |
fulltext |
ISSN 1562-6016. ВАНТ. 2017. №1(107)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2017, № 1. Series: Plasma Physics (23), p. 179-182. 179
THE SIZE EFFECT AND X-RAY FLUORESCENC SPECTRA OF
METALLIC NANOPARTICLES
Yu.E. Kolyada
1
, N.A. Savinkov
2
, A.A. Bizyukov
3
, O.N. Bulanchuk
2
1
Mariupol State University, Mariupol, Ukraine;
2
Donetsk State University of Management, Mariupol, Ukraine;.
3
V.N. Karazin Kharkiv National University, Kharkov, Ukraine
E-mail: yukol@ukr.net
X-ray fluorescence scattering spectra of metallic nanoparticles (copper (Cu), aluminum (Al), titanium (Ti)) are
studied. Nanostructures were fabricated by nonequilibrium metallic vapor-induced desorption from plasma blob
which was generated by pulse electrothermal plasma accelerator. It is discovered the shift of X-ray spectra on de-
pending of particle sizes. The shift of X-ray fluorescence scattering spectra for Kα-and Kβ-lines is registered for Аl
nanostructures with average size ≈14 nm. The analogical shift is not observed for Ti and Cu particles with greater size.
PACS: 78.70.En, 81.16.-b
INTRODUCTION
At last decades the explosive development of
nanotechnologies and related new scientific tendencies
are under high interest for researching of metallic
nanoparticles and nanostructures which demonstrates
unique electrophysical and optical properties that is not
typical for isolated atoms or solid state metals [1-3].
These properties are the basis for production of
nanocomposite metallic coatings [4, 5], the manufactur-
ing of emitters and cathode components of electronic
devices using nanostructured materials [6], the con-
struction of nanoscale carbon materials fullerenes and
nanotubes [7].
It is known that changing of size and shape of
nanoparticle alters its electronic structure and optical
properties (size effect). The size effect arises in many
experimental researches. The intensity dependencies of
gold cluster photoluminescence on number of atoms in
cluster are shown in [8,9]. It was researched the optical
Raman scattering spectra of the nanocrystals (with
particle size 5 nm) [10].
It is theoretically proved that main maximum of op-
tical Raman scattering spectra in frequency range
(500…520) sm
-1
displaces significantly to lower energy
for nanostructures with a smaller size. For nanoclusters
of transition metals (Ni, Co, Cr) it is experimentally
observed the shift of photoelectron spectra and "core"
electrons binding energies in atoms in dependence of
nanoclusters size [11].
Now the investigation of nanoparticles X-ray spectra
is under the great interest because it is insufficiently
understood. Particularly the X-ray shifts of manganese
K-lines are obtained for nanoparticles oxides MnO,
Mn3O4 and MnO2 relatively to the corresponding macro
material [12]. However in mentioned above references
and many analogical works the electromagnetic proper-
ties of small particles were researched only for particles
with a size less than 10 nm
The purpose of the work is the investigation of X-
ray nanoparticles (Cu, Al, Ti) fluorescence scattering
spectra and making comparison it with macro materials
spectra.
1. EXPERIMENTAL DEVICE
The electrothermal plasma accelerator (ETPA)
(Fig. 1) is used for metallic nanoparticles production.
The body 1 is made of dialectical rigid thick-walled
tube with length 40 sm. The inner diameter is 8 mm and
wall thickness is 1 sm. The edge of dialectical body is
molded by metallic barrels 3 and 4. The changeable rod
cathode 2 with diameter 6 mm is attached to the barrel 3
by means of threaded connection. The cathode is made
of nanoparticles material. The more detailed description
of ETPA and its application in some scientific research-
es is shown in [13, 14].
a
b
Fig. 1. The electrothermal plasma accelerator (a) and
its electrical power supply circuit (b)
2. EXPERIMENTAL RESULTS
For collecting and analysis of nanoparticles are used
glass substrates with size (3 х 3) sm positioned outside
of the ring anode 4 on the distance of (6…8) sm. The
investigation of nanoparticles shapes and sizes was car-
ried out by a scanning electron microscope JSM -
6390LV (JEOL company, Japan). On one photo there
are 200…400 particles of different sizes [15].
By using a such method of plasma blob generation
there are atoms and molecules of wall material, elec-
trodes and air in it. This can result to oxides, nitrides
and hydrocarbon groups formation. In the combustion
product of high-current discharge arc it is possible the
existence and ejection of a droplet fraction of the cath-
ode material. Just the cathode is the most affected to
mailto:yukol@ukr.net
180 ISSN 1562-6016. ВАНТ. 2017. №1(107)
erosion in the discharge. For the clearing of nanoparti-
cles generation mechanism the chemical composition of
synthesized particles is studied. The method of X-ray
fluorescence spectral analysis (XRF) is used. The meas-
urements are made by wave X-ray fluorescence spec-
trometer ARL OPTIM X-0335 (spectral resolution
≈15 eV for the emission K and K lines). It was car-
ried out the quantitative spectral analysis of the nano-
particles deposited on the glass substrates and on the
cathode material (macro material). Then the elemental
composition of macro material was compared with the
material composition of the synthesized nanostructures.
In the Table the results of such comparison for alu-
minum cathode are presented (the percentage ratio by
components weight). Table shows that the composition
by percentage of the same elements for the cathode
macro material and for the aluminum nanoparticles syn-
thesized on substrates is essentially different. It is im-
portant to note that the series of elements (W, Pb, Ga,
Zn) inherent to initial aluminum cathode is fully absent
in the nanoparticles composition. The analogous regu-
larity is also characteristic for the titanic and copper
cathode used in the study. Thus the synthesis of nano-
particles under our experiment occurs not due to the
"spray" of cathode material droplets but exclusively as
the result of the non-equilibrium condensation of super-
saturated metal vapor from the discharge region onto the
substrate. It is not detected oxides, nitrides and other
compounds that could theoretically arise in the dis-
charge.
The elemental composition of the aluminum nano-
particles on glass (right column), the material of the
aluminum cathode (center column) and glass substrate
(left column)
Element
glass,
m/m
aluminum,
m/m
Al on glass,
m/m
Si 66.43817 0.421 61.2706138
Na 16.73793 0.0445 11.83023801
Ca 8.064639 0.0595 7.572123027
Mg 4.945297 0.304 3.737892792
Al 2.168323 98.55 13.8725918
K 1.004276 0.0099 0.942180193
S 0.368995 0.064 0.418104503
Fe 0.125915 0.352 0.134101721
Cl 0.079505 0.0435 0.144891514
Px 0.017499 0.0783 0.026974484
Ti 0.015977 0.0062 0.014450616
Cu 0.014836 0.0181 0.01657004
Zr 0.005706 0.005780247
Rb 0.003804 0.004238847
Ni 0.003233 0.0049 0.002312099
Sr 0.003043 0.001926749
Mn 0.002853 0.0034 0.005009547
W 0.0114
Pb 0.0104
Ga 0.0082
Zn 0.0071
100 99.9964 100
In [16] it was calculated the sizes and was carried
out the statistical analysis of microscopic cathode mate-
rial particles arisen in the pulse high-voltage vacuum
discharge. The good correlation between mean free path
of Fermi-electrons in corresponding metal and charac-
teristic size of the aerosol microparticles follows from
obtained data. This feature is characteristic for pulsed
heat system.
This is why in this study we used the analogous
technique: the sample mean of nanoparticles sizes for
used cathodes is calculated by known ratio of mean free
path of Fermi-electrons F = Ed0/ n0kT (where E –
Young modulus; d0 – lattice constant;
0n free-electron
concentration in the metal which is determined by value
of Hall constant; k – Boltzmann constant; T absolute
temperature). For Al: F = lAl =14 nm; for Cu:
F = lCu = 30.1 nm and for Ti: F = lTi =85.9 nm.
The calculated particle sizes are in a good agreement
with the sizes observed by the electron microscope. The
X-ray fluorescence spectra are investigated for alumi-
num, copper, titanic nanoparticles made by a such
method. For this purpose the X-ray fluorescence spec-
trometer ARL OPTIM X-0335 (rhodium node) was
used. Radiation of Rh K (h 20213 eV) and Rh K
(h 2276 eV) lines are applied for the fluorescence
excitation. Fig. 2 shows these spectra which are com-
pared with the spectra of cathode macro material. On
Fig. 2,a,b the fluorescence spectrum of the aluminum
nanoparticles has the energy shift with respect to the
spectrum of macro material. The shift of K line is
E 0.35 eV and K line shift is E 3.81 eV. The
analogues shift for titan and copper is not observed. In
this case the both lines coincide (Figs. 2,c and 2,d).
3. DISCUSSION
The obtained spectra can be explained as follows. It
is known that even small changes in the size of the na-
noparticles lead to a visible shift of the optical ab-
sorption band of nanomaterials. This results to their
wide application in optics. Distributed in a transparent
matrix metallic nanoparticles with size l < 20 nm reveal
unusual optical properties. One example of such sys-
tems are known even in ancient times colored glass and
stained glass windows of medieval Gothic cathedrals
(which are colloidal solutions of metal clusters in a
glass matrix) [17]. According to classical optics the ab-
sorption spectrum of colloidal solution doesn’t depend
on particles size when cluster size D is substantially
smaller than the wavelength of incident light: D/λ << 1.
Thus the radiation absorption of material doesn’t de-
pend on the nanoparticles size for a nanosize
(10…100 nm) systems and wavelengths in the optical
spectrum. But it is supposed that experimentally regis-
tered radiation absorption in the metallic nanoparticles
systems occurs due to the size effect associated with the
plasmon resonance absorption. The obtained results
exhibit that caused by localized plasmons size effect
appears in the fluorescence X-ray spectrum of metallic
nanoparticles also. Unlike the optical spectra in this case
there is resonance absorption of the initial X-ray photons
ISSN 1562-6016. ВАНТ. 2017. №1(107) 181
Fig. 2. X-ray spectra of the nanoparticles fluorescence and corresponding macro material: aluminum K (a) and
K -line (b) (dashed curve nanoparticle; solid curve – macro material); titanium (both curves coincide) (c); copper
(both curves coincide) (d)
by K-shell electrons of aluminum atoms (likewise cop-
per and titanium atoms). As a result a vacancy appears
in the atomic K-shell. On the next stage the vacancy is
filled by the electrons of L-shell (L K–transition)
which leads to the К lines emission by the aluminum
atoms (see Fig. 2,a) and titanium atoms (see Figs. 2,c,d).
In the Al and Cu atoms the vacancy is also filled by
electrons of M-shell (М2,3 К–transition) that leads to
the K emission line (aluminum – Fig. 2,b) and K 13
lines (copper – Fig. 2,d). Under radiation absorption of
initial X-rays quanta and simultaneously under fluores-
cence excitation processes it also can occur radiationless
transitions of electrons, LI LIII and LI LIIIMV –
transitions leading to the release of photoelectrons and
Auger electrons from atoms. The part of the initial X-
ray photon energy is consumed by these processes. The
energy decrease of the registered fluorescence quanta in
comparison to the energy of the initial X-ray photons
indicates on this fact. The energy peaks of the spectral
curves Al K on Fig. 2,b are in ≈ (14…15) times less
than the energy of the initial emission line of a rhodium
anode. The energy peaks of the spectral curves for tita-
nium and copper are less than the energy of the initial
emission line in ≈5 times and ≈2.55 times respectively.
The spectra shift of Al nanoparticles with respect to
the aluminum solid (K line is shifted to lower ener-
gies, the K line – to the high-energy region –
Fig. 2,b,a) indicates to the energy level deformation (K-,
L- and M-levels) of the aluminum atom "core" electrons
under formation process of nanostructures with the par-
ticle size of smaller than a some critical size.
For aluminum nanoparticles with size l = 14 nm such
deformation takes place and it is not visible for larger
nanoparticles: titanium l = 85.9 nm and copper l =
30.1 nm.
This deformation is so small that it can’t appear in
the optical spectra. On the Fig. 2,b the shift of the two
curves maximum for the K -line is ≈0,023 Å that is
much smaller than the wavelength of the visible range.
Thus in this paper it is proposed a completely new ap-
proach to the study of the metallic nanostructures prop-
erties by using of X-ray fluorescence spectra for the size
and structural analysis of metal nanoparticles.
CONCLUSIONS
1. It is synthesized the aluminum, titanium and copper
nanoparticles onto dielectric substrates by using ETPA.
The fulfilled X-ray spectral analysis (RFA) allows to
determine the mechanism of nanoparticle synthesis us-
ing technique of the non-equilibrium supersaturated
condensation of the plasmoid metal vapor onto the sub-
strate.
2. The X-ray fluorescence spectra of aluminum, copper
and titanic nanoparticles deposited on the dielectric sub-
strates are experimentally obtained and analyzed. These
spectra are compared with the spectra of the macro ma-
terials of corresponding cathodes.
3. It is found the size effect of the X-ray fluorescence
spectra: the fluorescence spectra of aluminum nanopar-
ticles (K - and K - line) are shifted with respect to cor-
responding spectrum of macro material. There is no
such spectral line shift for Ti and Cu nanoparticles with
larger size.
182 ISSN 1562-6016. ВАНТ. 2017. №1(107)
REFERENCES
1. S.A. Мaier. Plasmonics:Fundamentals and Applica-
tions. New York: "Springer", 2007, p. 201.
2. S.V. Gaponenko. Introduction to Nanophotonics.
Cambridge: "Cambridge University Press", 2010,
p. 465.
3. A.I. Gusev. Nanomaterials, nanostructures, nano-
technology. Мoscow: “Fizmatlit”, 2009, p. 416 (in Rus-
sian).
4. S.V. Eliseeva, Yu.F. Nasedkina, D.I. Semenzov. Op-
tical spectra of nano composite medium and films with
metallic inclusions // Optics and Spectroscopy. 2014,
v. 117, № 6, p. 914-920.
5. M.A. Yarrmolenko, A.A. Rogachov, P.A. Luchnikov,
A.B. Rogachov. Preparation of film coatings based on a
polymeric matrix with silver nanoparticles by vapor
deposition // Nanomaterials and nanostructures – XXI
сenture. 2012, № 2, p. 21-25.
6. N.N. Bаlan, E.I. Ivaschov, P.A. Luchnikov,
A.B. Nevskiy. Technological features of the formation
of the cathode parts of field-emission and tunneling
nano- and microdevices // Nanomaterials and
nanostructures – XXI сenture. 2012, № 2, p. 36-43.
7. V.V. Кlimov. Nanoplasmonika // Uspehi Phisicheskih
Nauk. 2008, v. 178, № 8, p. 875-880 (in Russian).
8. J. Zheng, C. Zhang, R.M. Dickson. Highly fluores-
cent, water-soluble, size-tunable gold quantum dots //
Physical Review Letters. 2004, v. 93, № 7, p. 077402-1
–077402-4.
9. J.I. Gonzalez, T.-H. Lee, M.D. Barnes, Y. Antoku,
R.M.Dickson. Quantum mechanical single-gold-
nanocluster electroluminescent light source at rоom
temperature // Physical Review Letters. 2004, v. 93,
№ 14, p. 147402-147405.
10. V.G. Kravets. Silicon nanoparticles: photolumines-
cence, the complex refractive index and their relation-
ship with the band structure // Optics and Spectroscopy.
2013, v. 114, № 2, p. 253-259 (in Russian).
11. V.D. Bormann, M.A. Pushkin, V.N. Tronin,
V.I. Тroyan. A study of the evolution of the electronic
properties of transition metals nanoclusters on the
graphite surface // Experimental and Theoretical Phys-
ics Journal. 2010, v. 137, № 6, p. 1151-1174.
12. A.A. Naberezhnov, A.A. Petrunin, A.E. Sovestnov,
D.A. Kurdyukov, E.V. Fomin, S.B. Vahruschev. Shifts
of X-ray lines of manganese in its oxide nanoparticles //
Journal Technical Physics Letters. 2015, v. 41, № 24,
p. 89-94.
13. Yu.E. Kolyada, V.I. Fedun. Pulse еlectrothermal
Plasma Accelerators and its Application in scientific
Researches // Problems of Atomic Science and Technol-
ogy. Series “Plasma Electronics and New Methods of
Acceleration”. 2015, v. 98, № 4, p. 325-330.
14. Yu.E. Kolyada, V.I. Fedun. Excitation of elastic
pulses by powerful plasmoids in the acoustic waveguide
// Problems of Atomic Science and Technology. Series
“Plasma Electronics and New Methods of Accelera-
tion”. 2008, v. 56, № 4, p. 260-263.
15. Yu.E. Kolyada, V.I. Fedun, V.I. Tyutyunnikov,
N.A. Savinkov, A.E. Kapustin. Formation Mechanism
of the Metallic Nanostructures Using Pulsed Axial
Eltctrothermal Plasma Accelerator // Problems of Atom-
ic Science and Technology. Series: “Plasma Electronics
and New Methods of Acceleration”. 2013, v. 86, № 4,
p. 297-300.
16. Yu.E. Kolyada, V.I. Fedun, S.P. Desyatsky. Statisti-
cal analysis of the droplet fraction of explosion-
emission cathode // Problems of Atomic Science and
Technology. Series“Plasma Electronics and New Meth-
ods of Acceleration”. 2006, № 5, p. 113-115.
17. V.V. Кlimov. Nanoplasmonika. Мoscow:
“Fizmatlit”, 2009, p. 480 (in Russian).
Article received 29.11.2016
РАЗМЕРНЫЙ ЭФФЕКТ И РЕНТГЕНОФЛУОРЕСЦЕНТНЫЕ СПЕКТРЫ
МЕТАЛЛИЧЕСКИХ НАНОЧАСТИЦ
Ю.Е. Коляда, Н.А. Савинков, A.A. Бизюков, О.Н. Буланчук
Исследуются рентгенофлуоресцентные спектры рассеяния металлических наночастиц меди, титана и
алюминия. Наноструктуры были получены методом неравновесной десорбции на стеклянную подложку
металлического пара из плазменного сгустка. Для этого использовался импульсный электротермический
плазменный ускоритель. Анализ рентгеновских спектров позволил обнаружить их смещение по частоте в
зависимости от размеров наночастиц. Для наноструктур Аl, имеющих средний размер ≈14 нм, зафиксирован
сдвиг рентгенофлуоресцентных спектров рассеяния для Kα- и Kβ-линий. Аналогичный сдвиг отсутствует для
частиц титана и меди, имеющих больший размер наночастиц.
РОЗМІРНИЙ ЕФЕКТ І РЕНТГЕНОФЛУОРЕСЦЕНТНІ СПЕКТРИ
МЕТАЛЕВИХ НАНОЧАСТИНОК
Ю.Є. Коляда, М.О. Савінков, О.О.Бізюков, О.М. Буланчук
Досліджуються рентгенофлюоресцентні спектри розсіювання металевих наночастинок міді, титану та
алюмінію. Наноструктури було виготовлено методом нерівноважної десорбції на скляну підкладку метале-
вої пари із плазмового згустка. Для цього використовувався імпульсний електротермічний плазмовий прис-
корювач. Аналіз рентгенівських спектрів дозволив встановити їх зміщення по частоті в залежності від роз-
мірів частинок. Для наноструктур Аl, що мають середній розмір ≈14 нм, зареєстровано зміщення рентгеноф-
люоресцентних спектрів розсіювання для Kα- та Kβ -ліній. Аналогічне зміщення відсутнє для частинок тита-
ну та міді з більшими розмірами.
|