Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode

In the paper the emitting ability of negative hydrogen ions H⁻ in longitudinal direction from Penning discharge with metal-hydride cathode is investigated. This effect is possible due to mutual influence of activated hydrogen desorbed from metal-hydride on discharge properties. In order to separate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Sereda, I.N., Tseluyko, A.F., Ryabchikov, D.L., Babenko, I.V., Hrechko, Ya.O., Hetman, V.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/122169
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode / I.N. Sereda, A.F. Tseluyko, D.L. Ryabchikov, I.V. Babenko, Ya.O. Hrechko, V.A. Hetman // Вопросы атомной науки и техники. — 2017. — № 1. — С. 183-186. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-122169
record_format dspace
spelling irk-123456789-1221692017-06-29T03:02:50Z Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode Sereda, I.N. Tseluyko, A.F. Ryabchikov, D.L. Babenko, I.V. Hrechko, Ya.O. Hetman, V.A. Низкотемпературная плазма и плазменные технологии In the paper the emitting ability of negative hydrogen ions H⁻ in longitudinal direction from Penning discharge with metal-hydride cathode is investigated. This effect is possible due to mutual influence of activated hydrogen desorbed from metal-hydride on discharge properties. In order to separate negative ions from extracted current of charged particles an electromagnetic filter is applied. The efficiency of the filter is carried out experimentally and optimal external parameters for H⁻ ions separation are determined. The experimental results about negative ions extraction along an external magnetic field from Penning discharge are given. The beam current of H⁻ ions is got on the level of 5 μA. Исследуется способность пеннинговского разряда с насыщенным водородом металлогидридным катодом эмитировать отрицательные ионы водорода Н⁻ в продольном направлении. Это становится возможным благодаря взаимному влиянию активированного водорода, десорбируемого из металлогидрида, на свойства разряда. С целью сепарации отрицательных ионов из извлекаемого потока заряженных частиц применяется электромагнитный фильтр. Эффективность работы фильтра исследована экспериментально и определены оптимальные внешние параметры для сепарации ионов Н⁻. Приведены экспериментальные данные по извлечению отрицательных ионов вдоль магнитного поля из пеннинговского разряда. Получен ток пучка ионов Н⁻ на уровне 5 мкА. Досліджується здатність пеннінговского розряду з насиченим воднем металогідридним катодом емітувати негативні іони водню Н⁻ в поздовжньому напрямку. Це стає можливим завдяки взаємному впливу акти-вованого водню, що десорбується з металогідриду, на властивості розряду. З метою сепарації негативних іонів з потоку заряджених частинок, що витягається, застосовується електромагнітний фільтр. Ефективність роботи фільтра досліджена експериментально і визначені оптимальні зовнішні параметри для сепарації іонів Н⁻. Наведено експериментальні дані по вилученню негативних іонів уздовж магнітного поля з пеннінговского розряду. Отримано струм пучка іонів Н⁻ на рівні 5 мкА. 2017 Article Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode / I.N. Sereda, A.F. Tseluyko, D.L. Ryabchikov, I.V. Babenko, Ya.O. Hrechko, V.A. Hetman // Вопросы атомной науки и техники. — 2017. — № 1. — С. 183-186. — Бібліогр.: 13 назв. — англ. 1562-6016 PACS: 52.80.Sm http://dspace.nbuv.gov.ua/handle/123456789/122169 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Sereda, I.N.
Tseluyko, A.F.
Ryabchikov, D.L.
Babenko, I.V.
Hrechko, Ya.O.
Hetman, V.A.
Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode
Вопросы атомной науки и техники
description In the paper the emitting ability of negative hydrogen ions H⁻ in longitudinal direction from Penning discharge with metal-hydride cathode is investigated. This effect is possible due to mutual influence of activated hydrogen desorbed from metal-hydride on discharge properties. In order to separate negative ions from extracted current of charged particles an electromagnetic filter is applied. The efficiency of the filter is carried out experimentally and optimal external parameters for H⁻ ions separation are determined. The experimental results about negative ions extraction along an external magnetic field from Penning discharge are given. The beam current of H⁻ ions is got on the level of 5 μA.
format Article
author Sereda, I.N.
Tseluyko, A.F.
Ryabchikov, D.L.
Babenko, I.V.
Hrechko, Ya.O.
Hetman, V.A.
author_facet Sereda, I.N.
Tseluyko, A.F.
Ryabchikov, D.L.
Babenko, I.V.
Hrechko, Ya.O.
Hetman, V.A.
author_sort Sereda, I.N.
title Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode
title_short Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode
title_full Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode
title_fullStr Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode
title_full_unstemmed Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode
title_sort longitudinal extraction of h⁻ ions from penning discharge with metal-hydride cathode
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2017
topic_facet Низкотемпературная плазма и плазменные технологии
url http://dspace.nbuv.gov.ua/handle/123456789/122169
citation_txt Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode / I.N. Sereda, A.F. Tseluyko, D.L. Ryabchikov, I.V. Babenko, Ya.O. Hrechko, V.A. Hetman // Вопросы атомной науки и техники. — 2017. — № 1. — С. 183-186. — Бібліогр.: 13 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT seredain longitudinalextractionofhionsfrompenningdischargewithmetalhydridecathode
AT tseluykoaf longitudinalextractionofhionsfrompenningdischargewithmetalhydridecathode
AT ryabchikovdl longitudinalextractionofhionsfrompenningdischargewithmetalhydridecathode
AT babenkoiv longitudinalextractionofhionsfrompenningdischargewithmetalhydridecathode
AT hrechkoyao longitudinalextractionofhionsfrompenningdischargewithmetalhydridecathode
AT hetmanva longitudinalextractionofhionsfrompenningdischargewithmetalhydridecathode
first_indexed 2025-07-08T21:17:04Z
last_indexed 2025-07-08T21:17:04Z
_version_ 1837115035832287232
fulltext ISSN 1562-6016. ВАНТ. 2017. №1(107) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2017, № 1. Series: Plasma Physics (23), p. 183-186. 183 LONGITUDINAL EXTRACTION OF H – IONS FROM PENNING DISCHARGE WITH METAL-HYDRIDE CATHODE I.N. Sereda, A.F. Tseluyko, D.L. Ryabchikov, I.V. Babenko, Ya.O. Hrechko, V.A. Hetman V.N. Karazin Kharkiv National University, Kharkov, Ukraine E-mail: igorsereda@karazin.ua In the paper the emitting ability of negative hydrogen ions H – in longitudinal direction from Penning discharge with metal-hydride cathode is investigated. This effect is possible due to mutual influence of activated hydrogen desorbed from metal-hydride on discharge properties. In order to separate negative ions from extracted current of charged particles an electromagnetic filter is applied. The efficiency of the filter is carried out experimentally and optimal external parameters for H – ions separation are determined. The experimental results about negative ions extraction along an external magnetic field from Penning discharge are given. The beam current of H – ions is got on the level of 5 µA. PACS: 52.80.Sm INTRODUCTION The interest in sources of negative hydrogen ions H – is caused by high efficiency of their neutralization in the energy range of 0.15…1 MeV [1]. Therefore, H – ions are widely used for corpuscular heating and plasma diagnostic, for doubling the particles energy in tandem accelerators [2] and for extracting them from cyclotrons without using a deflector [3]. Currently, such accelera- tors are widely applied in the production of a number of medical radionuclides for diagnosis and for contact radiotherapy [2-4]. Typically, the initial injection of H – beam is realized by cesium surface plasma sources [5] that limits their wide application. For the mass application the most pre- ferred are the sources with bulk H – ions formation and without cesium adding [6, 7]. In such sources H – ions is generating due to dissociative attachment of thermal electrons to vibration-excited hydrogen molecules H2 * , which have the main electronic state Х 1 Σg + [1, 8]. In- creasing the vibration quantum number ν from 0 to 5 makes the cross section of dissociative attachment rise by five orders of magnitude up to the value of 10 -16 cm 2 , but the energy threshold of the process reduces from 3.73 eV (at ν = 0) to 1.45 eV (at ν = 5) [9, 10]. The necessary concentration of H2 * achieves mainly by cascade way of vibration states occupation due to radiative transitions from the singlet electronically ex- cited states of molecules H2 [10]. For the efficient states occupation it is typically used an electron beam with the energy of εbe ≥ 50 эВ. But here it should be noted that electrons with energy more then few electron volts in- tensively destroy H – ions, so vibration-excited hydrogen molecules should be taken away from the area with low- energy electrons. As a rule, such sources are double- chambered that invariably entails the loss of Н2 * mole- cules and reduces system efficiency. Fortunately, there is an original division of the areas with fast and slow electrons in Penning discharge: in anode layer electrons are heated to the required energy by diocotron instability, and in cathode region there is a large number of slow electrons got both due to second- ary emission processes, and due to reflection and scat- tering as well [11]. The H – ions extraction from Penning discharge traditionally realizes from cathode region per- pendicular to the external magnetic field and that is of- ten causes a number of intractable constructive prob- lems. Therefore, more preferred would be a source with an axial extraction of H – ion beam. 1. PROBLEM STATEMENT With this regard the metal-hydride technology is of great interest. When one of the cathodes in Penning discharge is replaced on metal-hydride one (MH-active cathode) the properties of the discharge significantly changes. It appears an additional mode of operation (III) (Fig. 1), when at discharge voltage Ud > 3.5 kV the negative current begins flowing in the axial direction along the external magnetic field (curve 1) [12, 13]. (Using conventional cathodes (curve 2) is registered no negative current). 1 2 3 4 5 -10 -8 -6 -4 -2 0 2 4 IIIII 1I co l,  A U d , kV 2 I Fig. 1. Dependence of collector current Icoll on discharge voltage Ud (Hzo0 = 800 Oe, p = 5∙10 -6 Torr), 1 – MH-cathode; 2 – copper cathodes The negative current is caused by electrons output due to both addition energy appearance in unstable an- ode layer and reduction of space potential at the axis of the discharge as well, i.e. decreasing of cathode poten- tial barrier for negatively-charged particles [12]. The voltage drop when discharge is reorganized as well as collector current might slightly vary depending on the geometry of a cell and other external factors. However, if a MH-cathode applies there is always mode III of the discharge. An important advantage of the active MH-cathode is the forming of Н2 * molecule directly by the surface due to metal-hydride activation of desorbed hydrogen [10]. Those, exactly in the area where the largest amount of thermal electrons is contained! This opens up an addi- tional powerful incoming channel of vibration-exited 184 ISSN 1562-6016. ВАНТ. 2017. №1(107) Н2 * molecules that is beneficial to increase of H – ions formation. Thus, MH-cathode applying in Penning discharge will not only significantly increase the efficiency of H – ions formation, but also will provide the conditions for the longitudinal output of negative ions from the cell. The problem that arises here is the necessity of H – ions separation from the total flow of charged particles output longitudinally. Removing of positive ions Н2 + could be done with an electric field by introducing de- layed grid with positive potential, and electrons could be removed with a magnetic filter installed behind the cathode. 2. EXPERIMENTAL SETUP The scheme of Penning discharge with MH-cathode and with electromagnetic filter is shown in the Fig. 2. Fig. 2. The scheme of experiment, 1 – active MH-cathode; 2 – anode; 3 – passive copper cathode with an aperture; 4 – cutoff grid; 5 – electron current collector; 6 – magnetic filter coil; 7 – collector; 8 – resulted magnetic field Hz when the magnetic filter is switched on The discharge cell was composed of an active water- cooled MH-cathode 1, a tubular anode 2 and a copper passive cathode 3 with a central aperture. Behind the aperture in the passive cathode an electromagnetic filter was set. It included a grid 4 for positive ions cutting off, a magnetic coil 6 to divert electrons, a collector of di- verted electrons 5 and a collector of extracted axial beam 7. The cell was placed in external uniform longitudinal magnetic field Hzo0 = 0…1000 Oe. The coil 6 was switched such a way to create between the cathode 3 and the collector 7 the reverse magnetic field Hz0 enough to divert electrons on the collector 5. The MH-cathode 1 had the form of a disc 0.5 cm thick and 2.0 cm in diameter. It was produced by press- ing of saturated with hydrogen powder Zr50V50Hx with copper binder. The initial hydrogen saturation degree was about 900 cm 3 at normal conditions. In order to stabilize the rate of hydrogen desorption the MH- cathode had a water-cooling unit. Its temperature in the experiments did not exceed 20 0 C, that sufficiently lower than temperature of thermal decomposition of hydride phases. Therefore, Н2 * desorption was deter- mined only by the discharge current and was provided mainly by ion-stimulated processes on the surface of metal-hydride [13]. In the center of passive copper cathode 3 the same size as MH-cathode was an aperture 0.5 cm in diameter for charged particles extraction. Both cathodes were placed at 1.0 сm from cutting edge of the anode 2 2.0 cm long and 3.7 cm in diameter. In the electromag- netic filter the distances between the cathode 3, grid 4, collector 5 were identical and were 0.5 cm. The collec- tor 7 installed that way to have the same distance to electron current collector 5 of 0.5 cm. The cathodes 1 and 3, the electron current collec- tor 5 and the collector 7 had ground potential. The anode 2 was under positive voltage up to +5 kV. On the grid 4 was supplied +3 kV good enough for cutting off positive ions in the range of anode voltage applied. The parameters of magnetic coil 6 were selected from the condition to obtain a magnetic field topology ensuring to divert the electrons and keep the straight movement of negative hydrogen ions. It was evaluated with the equation of paraxial trajectories using numeri- cal simulation by the Runge-Kutta fourth-order method. 3. RESULTS AND DISCUSSION Preliminary experimental verification of electro- magnetic filter efficiency was carried out with an addi- tional electron source modeled the electron flow specif- ic for a given discharge cell [12]. The electron source was installed instead of the MH-cathode and created a cylindrical electron beam 0.6 cm in diameter, 10 µA of current and 100 eV of energy. The collector current dependence on the magnitude of resultant magnetic field Hz0 in the center of the filter coil 6 was determined. The results are shown in Fig. 3. One can see, the electron beam is diverted almost entirely without reaching the collector 7 at zero resultant magnetic field Hz0 = 0. It kept only a small group of paraxial particles. It proved the efficiency of electro- magnetic filter for separation of electrons from output flow. In the carried out experiments decreasing the elec- tron beam current on the order of magnitude is achieved at values of resulted field Hz0  -50 Oe in the center of the filter coil that corresponds to a zero field in the cut- ting edge of the collector 7. For ease readability, this optimal distribution Hz0 is shown in Fig. 1 as a curve 8. 600 400 200 0 -200 -400 -600 -10 -8 -6 -4 -2 0 I co l,  A H z , Oe Fig. 3. Electron beam on collector depending on result- ed magnetic field at the center of filter magnetic coil Hz0, Нzo0 = 800 Oe, p = 5∙10 -6 Тоrr Ud +3kV 1 2 3 4 5 6 7 Icol l z Hz0 8 ISSN 1562-6016. ВАНТ. 2017. №1(107) 185 Fig. 4 shows the Penning discharge operation as an axial source of negative hydrogen ions. In this figure, dependence of collector current Icol on discharge voltage Ud at electro-magnetic filter switched off (curve 1) and at switched on one (curve 2) are shown. (The magnetic filter had optimal distribution of Hz0 (curve 8 in Fig. 2), while the cutting off grid was supplied with 3 kV.) 1 2 3 4 5 -10 -8 -6 -4 -2 0 IIIII 2 I co l,  A U d , kV 1 I Fig. 4. Dependence of collector current Icoll on dis- charge voltage Ud (Hzo0 = 800 Oe, p = 5∙10 -6 Torr), 1 – without magnetic filter, 2 – with magnetic filter One can see the negative current at filter switched on (curve 2) is registered only in those modes, when the total extracted current (curve 1) also takes negative val- ues. It is the resultant current of electrons, positive and negative hydrogen ions. And each of these components has its own dependence on the discharge voltage Ud. Thus, in mode I (Ud = 0.75…3 kV) the negative cur- rent more than 10 times higher than one when the elec- tro-magnetic filter is switched on. Basically this is elec- tron current, which successfully suppressed by magnetic filter. Small amount of positive ions are successfully retarded by grid 4. In mode II (Ud = 3…3.5 kV) there is positive current. The discharge operates as an ion source and there is no negative particles being extracted. And finally, in mode III (Ud > 3.5 kV) the large neg- ative current appears again. And in this case, electrons are effectively removes by the filter. As it was men- tioned above, the mode III is due to MH-cathode apply- ing. Thus, it could be assumed that curve 2 when electro- magnetic filter is switched on corresponds mainly to the current of negative hydrogen ions. The purification efficiency from electrons demon- strates Fig. 5. It is shown the dependence of collector current Icol on the resulted magnetic field at the center of the filter coil Hz0. The curves in Fig. 5 are correspond to discharge voltage Ud = 2.5 kV (I mode), Ud = 3.5 kV (transition from II to III mode) and Ud = 5.0 kV (III mode) at external magnetic field of 800 Oe. One can see from the figures since the reverse mag- netic field of the filter coil growths (resulted field Hz0 decreases) the collector current reduces. The rate of the reduction is not permanent. First (at the part of 700 … 0 Oe) there is a relatively fast current recession, and then (in the area from 0 to 100…-400 Oe) current reduction slows down (even with the plateau), then the decay of the current increases again. The vertical dash line here is pointed the values cor- responds to optimal resulted magnetic field distribution (see curve 8 in the Fig. 2). It should be noted that collector current changing along the reverse magnetic field growth is not associat- ed with a change in discharge conditions, since the loca- tion of the filter coil provided its magnetic field decreas- ing on 95 % in the plate of the cathode edge. In other words, it was specially chosen that whole reverse mag- netic field had been concentrated outside the discharge cell. 600 400 200 0 -200 -400 -600 -10 -8 -6 -4 -2 0 I co l,   H z0 , Oe U d =2.5 kV U d =3.5 kV U d =5 kV Fig. 5. Collector current depending on magnetic field at the centre of magnetic coil of the filter at different dis- charge voltages (Hzo0 = 800 Oe, p = 5∙10 -6 Torr) The negative collector current in the initial part of the curves reduces due to electrons diverting from the output flow. When the resulted field on the collector edge is about zero (the values pointed with vertical dash line) practically all the electrons are removed. Subse- quent plateau means that the field Hz0 is still not large enough to divert negative ions. And only at high reverse magnetic fields negative hydrogen ions obviously starts diverted from the flow. Thus, the electromagnetic filter behind the Penning discharge with MH-cathode quite good manages with purification of the negative hydrogen ions flow from electrons and positive ions. CONCLUSIONS The paper shows the possibility of creating a nega- tive hydrogen ions source with longitudinal extraction based on the Penning discharge with metal-hydride cathode. Hydrogen desorption of vibration-excited mol- ecules Н2 * from metal-hydride cathode leads to inten- sive formation of H – ions. Low residual pressure (p = 5∙10 -6 Тоrr) provides H – ions for unimpeded output in longitudinal direction together with electrons and positive ions. Successful purification of the flow from the elec- trons and positive ions is made with electro-magnetic filter installed behind the discharge. Positive ions are retarded by electric field and electrons are diverted by magnetic field. When the discharge voltage up to 5 kV, there is enough 3 kV on the grid for positive ion cutting off. For optimal electrons diverting the best configura- tions of the magnetic field is achieved when it is about zero on the edge of the collector. 186 ISSN 1562-6016. ВАНТ. 2017. №1(107) The obtained current of negative hydrogen ions is of 5 µA at discharge current of 1 mA and discharge voltage of 5 kV. The described way of H – ions formation and extraction may be of interest in high-vacuum devices, which require injecting continuous type beams. REFERENCES 1. K.N. Leung, C.A. Hauck, W.B. Kunkel, S.R. Walhter. Optimization of H - production from a small multicusp ion source // Sci. Instrum. 1989, v. 60 (4), p. 531. 2. J. Peters. Negative ions sources for high energy ac- celerators (invited) // Rev. Sci. Instr. 2002, v. 71, № 2, p. 1069-1074. 3. Th. Stammbach, S. Adam, A. Mezger, P.A. Schmelzbach, P. Sigg. Cyclotron performance and new developments // Proc. of the 8th Europ. Part. Acc. Conf. Paris, 2002, p. 159-163. 4. P.V. Bogdanov, I.N. Vasilchenko, S.V. Grigorenko, et al. Development and implementation of the project cyclotron SS-18/9 // "Electrophysical Apparatus" Series "SPb";Publisher: "Janus". 2010, v. 5(31), p. 21. 5. V. Dudnikov. Thirty years of surface plasma sources for efficient negative ion production // Rev. Sci. Instr. 2002, v. 73, № 2, p. 992 - 994. 6. K.W. Ehlers, B.F. Gavin, E.L. Hubbard. High- intensity negative ion sources // Nucl. Instrum. and Meth. 1963, v. 22, № 1, p. 87-92. 7. D.A. Skinner, P. Berlemont, M. Bacal. Modeling of volume hydrogen negative ion sources // Proc. of the 5th Sy mp. on Production and Neutralization of Negative Ions and Beams, Brookhaven. 1990, p. 557. 8. M. Bacal, G.W. Hamilton. H − and D − Production in Plasmas // Phys. Rev. Lett. 1979, v. 42, № 23, p. 1538- 1540. 9. M. Allan, S.F. Wong. Effect of vibration and rotation excitation on dissociative attachment in hydrogen. // Phys. Rev. Lett. 1978, v. 41, № 26, p. 1791-1794. 10. J.R. Hiskes. Cross sections for the vibrational excitation of the H2(X 1 ∑+ g ) state via electron collisional excitation of the higher singlet states // J. Appl. Phys. 1980, v. 51, № 9, p. 4592-4594. 11. O.J. Orient, A. Chutjian, S.H. Alajazian. Reversal ion source: A new source of negative ion beams // Rev. Sci. Instrum. 1985, v. 56, № 1, p. 69-72. 12. I.V. Borgun, D.L. Ryabchikov, I.N. Sereda, A.F. Tseluyko. Experimental simulation of metal- hydride cathode working in Penning discharge // Problems of Atomic Sci. and Tech. Series "Plasma Phys". 2013, № 1(83), 2013, p. 228-230. 13. A.V. Agarkov, D.L. Ryabchikov, I.N. Sereda, A.F. Tseluyko. PIG with metal-hydride cathode under ion-stimulated desorbtion of hydrogen // Problems of Atomic Sci. and Tech. Series “Plasma Electronics and New Acceleration Methods”. 2013, № 4(86), p. 301- 303. Article received 22.10.2016 ПРОДОЛЬНОЕ ИЗВЛЕЧЕНИЕ ИОНОВ Н – ИЗ РАЗРЯДА ПЕННИНГА С МЕТАЛЛОГИДРИДНЫМ КАТОДОМ И.Н. Середа, А.Ф. Целуйко, Д.Л. Рябчиков, Е.В. Бабенко, Я.А. Гречко, В.А. Гетман Исследуется способность пеннинговского разряда с насыщенным водородом металлогидридным катодом эмитировать отрицательные ионы водорода Н – в продольном направлении. Это становится возможным бла- годаря взаимному влиянию активированного водорода, десорбируемого из металлогидрида, на свойства разряда. С целью сепарации отрицательных ионов из извлекаемого потока заряженных частиц применяется электромагнитный фильтр. Эффективность работы фильтра исследована экспериментально и определены оптимальные внешние параметры для сепарации ионов Н – . Приведены экспериментальные данные по из- влечению отрицательных ионов вдоль магнитного поля из пеннинговского разряда. Получен ток пучка ио- нов Н – на уровне 5 мкА. ПОЗДОВЖНЄ ВИТЯГУВАННЯ ІОНІВ Н – З РОЗРЯДУ ПЕНІНГА З МЕТАЛОГІДРИДНИМ КАТОДОМ І.М. Середа, О.Ф. Целуйко, Д.Л. Рябчиков, Є.В. Бабенко, Я.О. Гречко, В.А. Гетман Досліджується здатність пеннінговского розряду з насиченим воднем металогідридним катодом емітува- ти негативні іони водню Н – в поздовжньому напрямку. Це стає можливим завдяки взаємному впливу акти- вованого водню, що десорбується з металогідриду, на властивості розряду. З метою сепарації негативних іонів з потоку заряджених частинок, що витягається, застосовується електромагнітний фільтр. Ефективність роботи фільтра досліджена експериментально і визначені оптимальні зовнішні параметри для сепарації іонів Н – . Наведено експериментальні дані по вилученню негативних іонів уздовж магнітного поля з пеннінговско- го розряду. Отримано струм пучка іонів Н – на рівні 5 мкА.