Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode
In the paper the emitting ability of negative hydrogen ions H⁻ in longitudinal direction from Penning discharge with metal-hydride cathode is investigated. This effect is possible due to mutual influence of activated hydrogen desorbed from metal-hydride on discharge properties. In order to separate...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/122169 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode / I.N. Sereda, A.F. Tseluyko, D.L. Ryabchikov, I.V. Babenko, Ya.O. Hrechko, V.A. Hetman // Вопросы атомной науки и техники. — 2017. — № 1. — С. 183-186. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-122169 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1221692017-06-29T03:02:50Z Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode Sereda, I.N. Tseluyko, A.F. Ryabchikov, D.L. Babenko, I.V. Hrechko, Ya.O. Hetman, V.A. Низкотемпературная плазма и плазменные технологии In the paper the emitting ability of negative hydrogen ions H⁻ in longitudinal direction from Penning discharge with metal-hydride cathode is investigated. This effect is possible due to mutual influence of activated hydrogen desorbed from metal-hydride on discharge properties. In order to separate negative ions from extracted current of charged particles an electromagnetic filter is applied. The efficiency of the filter is carried out experimentally and optimal external parameters for H⁻ ions separation are determined. The experimental results about negative ions extraction along an external magnetic field from Penning discharge are given. The beam current of H⁻ ions is got on the level of 5 μA. Исследуется способность пеннинговского разряда с насыщенным водородом металлогидридным катодом эмитировать отрицательные ионы водорода Н⁻ в продольном направлении. Это становится возможным благодаря взаимному влиянию активированного водорода, десорбируемого из металлогидрида, на свойства разряда. С целью сепарации отрицательных ионов из извлекаемого потока заряженных частиц применяется электромагнитный фильтр. Эффективность работы фильтра исследована экспериментально и определены оптимальные внешние параметры для сепарации ионов Н⁻. Приведены экспериментальные данные по извлечению отрицательных ионов вдоль магнитного поля из пеннинговского разряда. Получен ток пучка ионов Н⁻ на уровне 5 мкА. Досліджується здатність пеннінговского розряду з насиченим воднем металогідридним катодом емітувати негативні іони водню Н⁻ в поздовжньому напрямку. Це стає можливим завдяки взаємному впливу акти-вованого водню, що десорбується з металогідриду, на властивості розряду. З метою сепарації негативних іонів з потоку заряджених частинок, що витягається, застосовується електромагнітний фільтр. Ефективність роботи фільтра досліджена експериментально і визначені оптимальні зовнішні параметри для сепарації іонів Н⁻. Наведено експериментальні дані по вилученню негативних іонів уздовж магнітного поля з пеннінговского розряду. Отримано струм пучка іонів Н⁻ на рівні 5 мкА. 2017 Article Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode / I.N. Sereda, A.F. Tseluyko, D.L. Ryabchikov, I.V. Babenko, Ya.O. Hrechko, V.A. Hetman // Вопросы атомной науки и техники. — 2017. — № 1. — С. 183-186. — Бібліогр.: 13 назв. — англ. 1562-6016 PACS: 52.80.Sm http://dspace.nbuv.gov.ua/handle/123456789/122169 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Sereda, I.N. Tseluyko, A.F. Ryabchikov, D.L. Babenko, I.V. Hrechko, Ya.O. Hetman, V.A. Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode Вопросы атомной науки и техники |
description |
In the paper the emitting ability of negative hydrogen ions H⁻ in longitudinal direction from Penning discharge with metal-hydride cathode is investigated. This effect is possible due to mutual influence of activated hydrogen desorbed from metal-hydride on discharge properties. In order to separate negative ions from extracted current of charged particles an electromagnetic filter is applied. The efficiency of the filter is carried out experimentally and optimal external parameters for H⁻ ions separation are determined. The experimental results about negative ions extraction along an external magnetic field from Penning discharge are given. The beam current of H⁻ ions is got on the level of 5 μA. |
format |
Article |
author |
Sereda, I.N. Tseluyko, A.F. Ryabchikov, D.L. Babenko, I.V. Hrechko, Ya.O. Hetman, V.A. |
author_facet |
Sereda, I.N. Tseluyko, A.F. Ryabchikov, D.L. Babenko, I.V. Hrechko, Ya.O. Hetman, V.A. |
author_sort |
Sereda, I.N. |
title |
Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode |
title_short |
Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode |
title_full |
Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode |
title_fullStr |
Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode |
title_full_unstemmed |
Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode |
title_sort |
longitudinal extraction of h⁻ ions from penning discharge with metal-hydride cathode |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2017 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/122169 |
citation_txt |
Longitudinal extraction of H⁻ ions from Penning discharge with metal-hydride cathode / I.N. Sereda, A.F. Tseluyko, D.L. Ryabchikov, I.V. Babenko, Ya.O. Hrechko, V.A. Hetman // Вопросы атомной науки и техники. — 2017. — № 1. — С. 183-186. — Бібліогр.: 13 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT seredain longitudinalextractionofhionsfrompenningdischargewithmetalhydridecathode AT tseluykoaf longitudinalextractionofhionsfrompenningdischargewithmetalhydridecathode AT ryabchikovdl longitudinalextractionofhionsfrompenningdischargewithmetalhydridecathode AT babenkoiv longitudinalextractionofhionsfrompenningdischargewithmetalhydridecathode AT hrechkoyao longitudinalextractionofhionsfrompenningdischargewithmetalhydridecathode AT hetmanva longitudinalextractionofhionsfrompenningdischargewithmetalhydridecathode |
first_indexed |
2025-07-08T21:17:04Z |
last_indexed |
2025-07-08T21:17:04Z |
_version_ |
1837115035832287232 |
fulltext |
ISSN 1562-6016. ВАНТ. 2017. №1(107)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2017, № 1. Series: Plasma Physics (23), p. 183-186. 183
LONGITUDINAL EXTRACTION OF H
–
IONS FROM PENNING
DISCHARGE WITH METAL-HYDRIDE CATHODE
I.N. Sereda, A.F. Tseluyko, D.L. Ryabchikov, I.V. Babenko, Ya.O. Hrechko, V.A. Hetman
V.N. Karazin Kharkiv National University, Kharkov, Ukraine
E-mail: igorsereda@karazin.ua
In the paper the emitting ability of negative hydrogen ions H
–
in longitudinal direction from Penning discharge
with metal-hydride cathode is investigated. This effect is possible due to mutual influence of activated hydrogen
desorbed from metal-hydride on discharge properties. In order to separate negative ions from extracted current of
charged particles an electromagnetic filter is applied. The efficiency of the filter is carried out experimentally and
optimal external parameters for H
–
ions separation are determined. The experimental results about negative ions
extraction along an external magnetic field from Penning discharge are given. The beam current of H
–
ions is got on
the level of 5 µA.
PACS: 52.80.Sm
INTRODUCTION
The interest in sources of negative hydrogen ions H
–
is caused by high efficiency of their neutralization in the
energy range of 0.15…1 MeV [1]. Therefore, H
–
ions
are widely used for corpuscular heating and plasma
diagnostic, for doubling the particles energy in tandem
accelerators [2] and for extracting them from cyclotrons
without using a deflector [3]. Currently, such accelera-
tors are widely applied in the production of a number of
medical radionuclides for diagnosis and for contact
radiotherapy [2-4].
Typically, the initial injection of H
–
beam is realized
by cesium surface plasma sources [5] that limits their
wide application. For the mass application the most pre-
ferred are the sources with bulk H
–
ions formation and
without cesium adding [6, 7]. In such sources H
–
ions is
generating due to dissociative attachment of thermal
electrons to vibration-excited hydrogen molecules H2
*
,
which have the main electronic state Х
1
Σg
+
[1, 8]. In-
creasing the vibration quantum number ν from 0 to 5
makes the cross section of dissociative attachment rise
by five orders of magnitude up to the value of 10
-16
cm
2
,
but the energy threshold of the process reduces from
3.73 eV (at ν = 0) to 1.45 eV (at ν = 5) [9, 10].
The necessary concentration of H2
*
achieves mainly
by cascade way of vibration states occupation due to
radiative transitions from the singlet electronically ex-
cited states of molecules H2 [10]. For the efficient states
occupation it is typically used an electron beam with the
energy of εbe ≥ 50 эВ. But here it should be noted that
electrons with energy more then few electron volts in-
tensively destroy H
–
ions, so vibration-excited hydrogen
molecules should be taken away from the area with low-
energy electrons. As a rule, such sources are double-
chambered that invariably entails the loss of Н2
*
mole-
cules and reduces system efficiency.
Fortunately, there is an original division of the areas
with fast and slow electrons in Penning discharge: in
anode layer electrons are heated to the required energy
by diocotron instability, and in cathode region there is a
large number of slow electrons got both due to second-
ary emission processes, and due to reflection and scat-
tering as well [11]. The H
–
ions extraction from Penning
discharge traditionally realizes from cathode region per-
pendicular to the external magnetic field and that is of-
ten causes a number of intractable constructive prob-
lems. Therefore, more preferred would be a source with
an axial extraction of H
–
ion beam.
1. PROBLEM STATEMENT
With this regard the metal-hydride technology is of
great interest. When one of the cathodes in Penning
discharge is replaced on metal-hydride one (MH-active
cathode) the properties of the discharge significantly
changes. It appears an additional mode of operation (III)
(Fig. 1), when at discharge voltage Ud > 3.5 kV the
negative current begins flowing in the axial direction
along the external magnetic field (curve 1) [12, 13].
(Using conventional cathodes (curve 2) is registered no
negative current).
1 2 3 4 5
-10
-8
-6
-4
-2
0
2
4
IIIII
1I co
l,
A
U
d
, kV
2
I
Fig. 1. Dependence of collector current Icoll on
discharge voltage Ud (Hzo0 = 800 Oe, p = 5∙10
-6
Torr),
1 – MH-cathode; 2 – copper cathodes
The negative current is caused by electrons output
due to both addition energy appearance in unstable an-
ode layer and reduction of space potential at the axis of
the discharge as well, i.e. decreasing of cathode poten-
tial barrier for negatively-charged particles [12]. The
voltage drop when discharge is reorganized as well as
collector current might slightly vary depending on the
geometry of a cell and other external factors. However,
if a MH-cathode applies there is always mode III of the
discharge.
An important advantage of the active MH-cathode is
the forming of Н2
*
molecule directly by the surface due
to metal-hydride activation of desorbed hydrogen [10].
Those, exactly in the area where the largest amount of
thermal electrons is contained! This opens up an addi-
tional powerful incoming channel of vibration-exited
184 ISSN 1562-6016. ВАНТ. 2017. №1(107)
Н2
*
molecules that is beneficial to increase of H
–
ions
formation.
Thus, MH-cathode applying in Penning discharge
will not only significantly increase the efficiency of H
–
ions formation, but also will provide the conditions for
the longitudinal output of negative ions from the cell.
The problem that arises here is the necessity of H
–
ions
separation from the total flow of charged particles
output longitudinally. Removing of positive ions Н2
+
could be done with an electric field by introducing de-
layed grid with positive potential, and electrons could
be removed with a magnetic filter installed behind the
cathode.
2. EXPERIMENTAL SETUP
The scheme of Penning discharge with MH-cathode
and with electromagnetic filter is shown in the Fig. 2.
Fig. 2. The scheme of experiment,
1 – active MH-cathode; 2 – anode; 3 – passive copper
cathode with an aperture; 4 – cutoff grid; 5 – electron
current collector; 6 – magnetic filter coil; 7 – collector;
8 – resulted magnetic field Hz when the magnetic filter
is switched on
The discharge cell was composed of an active water-
cooled MH-cathode 1, a tubular anode 2 and a copper
passive cathode 3 with a central aperture. Behind the
aperture in the passive cathode an electromagnetic filter
was set. It included a grid 4 for positive ions cutting off,
a magnetic coil 6 to divert electrons, a collector of di-
verted electrons 5 and a collector of extracted axial
beam 7.
The cell was placed in external uniform longitudinal
magnetic field Hzo0 = 0…1000 Oe. The coil 6 was
switched such a way to create between the cathode 3
and the collector 7 the reverse magnetic field Hz0
enough to divert electrons on the collector 5.
The MH-cathode 1 had the form of a disc 0.5 cm
thick and 2.0 cm in diameter. It was produced by press-
ing of saturated with hydrogen powder Zr50V50Hx with
copper binder. The initial hydrogen saturation degree
was about 900 cm
3
at normal conditions. In order to
stabilize the rate of hydrogen desorption the MH-
cathode had a water-cooling unit. Its temperature in the
experiments did not exceed 20
0
C, that sufficiently
lower than temperature of thermal decomposition of
hydride phases. Therefore, Н2
*
desorption was deter-
mined only by the discharge current and was provided
mainly by ion-stimulated processes on the surface of
metal-hydride [13].
In the center of passive copper cathode 3 the same
size as MH-cathode was an aperture 0.5 cm in diameter
for charged particles extraction. Both cathodes were
placed at 1.0 сm from cutting edge of the anode 2
2.0 cm long and 3.7 cm in diameter. In the electromag-
netic filter the distances between the cathode 3, grid 4,
collector 5 were identical and were 0.5 cm. The collec-
tor 7 installed that way to have the same distance to
electron current collector 5 of 0.5 cm.
The cathodes 1 and 3, the electron current collec-
tor 5 and the collector 7 had ground potential. The
anode 2 was under positive voltage up to +5 kV. On the
grid 4 was supplied +3 kV good enough for cutting off
positive ions in the range of anode voltage applied.
The parameters of magnetic coil 6 were selected
from the condition to obtain a magnetic field topology
ensuring to divert the electrons and keep the straight
movement of negative hydrogen ions. It was evaluated
with the equation of paraxial trajectories using numeri-
cal simulation by the Runge-Kutta fourth-order method.
3. RESULTS AND DISCUSSION
Preliminary experimental verification of electro-
magnetic filter efficiency was carried out with an addi-
tional electron source modeled the electron flow specif-
ic for a given discharge cell [12]. The electron source
was installed instead of the MH-cathode and created a
cylindrical electron beam 0.6 cm in diameter, 10 µA of
current and 100 eV of energy.
The collector current dependence on the magnitude
of resultant magnetic field Hz0 in the center of the filter
coil 6 was determined. The results are shown in Fig. 3.
One can see, the electron beam is diverted almost
entirely without reaching the collector 7 at zero resultant
magnetic field Hz0 = 0. It kept only a small group of
paraxial particles. It proved the efficiency of electro-
magnetic filter for separation of electrons from output
flow.
In the carried out experiments decreasing the elec-
tron beam current on the order of magnitude is achieved
at values of resulted field Hz0 -50 Oe in the center of
the filter coil that corresponds to a zero field in the cut-
ting edge of the collector 7. For ease readability, this
optimal distribution Hz0 is shown in Fig. 1 as a curve 8.
600 400 200 0 -200 -400 -600
-10
-8
-6
-4
-2
0
I co
l,
A
H
z
, Oe
Fig. 3. Electron beam on collector depending on result-
ed magnetic field at the center of filter magnetic coil
Hz0, Нzo0 = 800 Oe, p = 5∙10
-6
Тоrr
Ud
+3kV
1
2 3
4
5
6
7
Icol
l
z
Hz0
8
ISSN 1562-6016. ВАНТ. 2017. №1(107) 185
Fig. 4 shows the Penning discharge operation as an
axial source of negative hydrogen ions. In this figure,
dependence of collector current Icol on discharge voltage
Ud at electro-magnetic filter switched off (curve 1) and
at switched on one (curve 2) are shown. (The magnetic
filter had optimal distribution of Hz0 (curve 8 in Fig. 2),
while the cutting off grid was supplied with 3 kV.)
1 2 3 4 5
-10
-8
-6
-4
-2
0
IIIII
2
I co
l,
A
U
d
, kV
1
I
Fig. 4. Dependence of collector current Icoll on dis-
charge voltage Ud (Hzo0 = 800 Oe, p = 5∙10
-6
Torr),
1 – without magnetic filter, 2 – with magnetic filter
One can see the negative current at filter switched on
(curve 2) is registered only in those modes, when the
total extracted current (curve 1) also takes negative val-
ues. It is the resultant current of electrons, positive and
negative hydrogen ions. And each of these components
has its own dependence on the discharge voltage Ud.
Thus, in mode I (Ud = 0.75…3 kV) the negative cur-
rent more than 10 times higher than one when the elec-
tro-magnetic filter is switched on. Basically this is elec-
tron current, which successfully suppressed by magnetic
filter. Small amount of positive ions are successfully
retarded by grid 4.
In mode II (Ud = 3…3.5 kV) there is positive current.
The discharge operates as an ion source and there is no
negative particles being extracted.
And finally, in mode III (Ud > 3.5 kV) the large neg-
ative current appears again. And in this case, electrons
are effectively removes by the filter. As it was men-
tioned above, the mode III is due to MH-cathode apply-
ing.
Thus, it could be assumed that curve 2 when electro-
magnetic filter is switched on corresponds mainly to the
current of negative hydrogen ions.
The purification efficiency from electrons demon-
strates Fig. 5. It is shown the dependence of collector
current Icol on the resulted magnetic field at the center of
the filter coil Hz0. The curves in Fig. 5 are correspond to
discharge voltage Ud = 2.5 kV (I mode), Ud = 3.5 kV
(transition from II to III mode) and Ud = 5.0 kV (III
mode) at external magnetic field of 800 Oe.
One can see from the figures since the reverse mag-
netic field of the filter coil growths (resulted field Hz0
decreases) the collector current reduces. The rate of the
reduction is not permanent. First (at the part of
700 … 0 Oe) there is a relatively fast current recession,
and then (in the area from 0 to 100…-400 Oe) current
reduction slows down (even with the plateau), then the
decay of the current increases again.
The vertical dash line here is pointed the values cor-
responds to optimal resulted magnetic field distribution
(see curve 8 in the Fig. 2).
It should be noted that collector current changing
along the reverse magnetic field growth is not associat-
ed with a change in discharge conditions, since the loca-
tion of the filter coil provided its magnetic field decreas-
ing on 95 % in the plate of the cathode edge. In other
words, it was specially chosen that whole reverse mag-
netic field had been concentrated outside the discharge
cell.
600 400 200 0 -200 -400 -600
-10
-8
-6
-4
-2
0
I co
l,
H
z0
, Oe
U
d
=2.5 kV
U
d
=3.5 kV
U
d
=5 kV
Fig. 5. Collector current depending on magnetic field at
the centre of magnetic coil of the filter at different dis-
charge voltages (Hzo0 = 800 Oe, p = 5∙10
-6
Torr)
The negative collector current in the initial part of
the curves reduces due to electrons diverting from the
output flow. When the resulted field on the collector
edge is about zero (the values pointed with vertical dash
line) practically all the electrons are removed. Subse-
quent plateau means that the field Hz0 is still not large
enough to divert negative ions. And only at high reverse
magnetic fields negative hydrogen ions obviously starts
diverted from the flow.
Thus, the electromagnetic filter behind the Penning
discharge with MH-cathode quite good manages with
purification of the negative hydrogen ions flow from
electrons and positive ions.
CONCLUSIONS
The paper shows the possibility of creating a nega-
tive hydrogen ions source with longitudinal extraction
based on the Penning discharge with metal-hydride
cathode. Hydrogen desorption of vibration-excited mol-
ecules Н2
*
from metal-hydride cathode leads to inten-
sive formation of H
–
ions. Low residual pressure
(p = 5∙10
-6
Тоrr) provides H
–
ions for unimpeded output
in longitudinal direction together with electrons and
positive ions.
Successful purification of the flow from the elec-
trons and positive ions is made with electro-magnetic
filter installed behind the discharge. Positive ions are
retarded by electric field and electrons are diverted by
magnetic field. When the discharge voltage up to 5 kV,
there is enough 3 kV on the grid for positive ion cutting
off. For optimal electrons diverting the best configura-
tions of the magnetic field is achieved when it is about
zero on the edge of the collector.
186 ISSN 1562-6016. ВАНТ. 2017. №1(107)
The obtained current of negative hydrogen ions is of
5 µA at discharge current of 1 mA and discharge voltage
of 5 kV. The described way of H
–
ions formation and
extraction may be of interest in high-vacuum devices,
which require injecting continuous type beams.
REFERENCES
1. K.N. Leung, C.A. Hauck, W.B. Kunkel,
S.R. Walhter. Optimization of H
-
production from a
small multicusp ion source // Sci. Instrum. 1989, v. 60
(4), p. 531.
2. J. Peters. Negative ions sources for high energy ac-
celerators (invited) // Rev. Sci. Instr. 2002, v. 71, № 2,
p. 1069-1074.
3. Th. Stammbach, S. Adam, A. Mezger,
P.A. Schmelzbach, P. Sigg. Cyclotron performance and
new developments // Proc. of the 8th Europ. Part. Acc.
Conf. Paris, 2002, p. 159-163.
4. P.V. Bogdanov, I.N. Vasilchenko, S.V. Grigorenko,
et al. Development and implementation of the project
cyclotron SS-18/9 // "Electrophysical Apparatus" Series
"SPb";Publisher: "Janus". 2010, v. 5(31), p. 21.
5. V. Dudnikov. Thirty years of surface plasma sources
for efficient negative ion production // Rev. Sci. Instr.
2002, v. 73, № 2, p. 992 - 994.
6. K.W. Ehlers, B.F. Gavin, E.L. Hubbard. High-
intensity negative ion sources // Nucl. Instrum. and
Meth. 1963, v. 22, № 1, p. 87-92.
7. D.A. Skinner, P. Berlemont, M. Bacal. Modeling of
volume hydrogen negative ion sources // Proc. of the
5th Sy mp. on Production and Neutralization of
Negative Ions and Beams, Brookhaven. 1990, p. 557.
8. M. Bacal, G.W. Hamilton. H
−
and D
−
Production in
Plasmas // Phys. Rev. Lett. 1979, v. 42, № 23, p. 1538-
1540.
9. M. Allan, S.F. Wong. Effect of vibration and rotation
excitation on dissociative attachment in hydrogen. //
Phys. Rev. Lett. 1978, v. 41, № 26, p. 1791-1794.
10. J.R. Hiskes. Cross sections for the vibrational
excitation of the H2(X 1
∑+
g ) state via electron collisional
excitation of the higher singlet states // J. Appl. Phys.
1980, v. 51, № 9, p. 4592-4594.
11. O.J. Orient, A. Chutjian, S.H. Alajazian. Reversal
ion source: A new source of negative ion beams // Rev.
Sci. Instrum. 1985, v. 56, № 1, p. 69-72.
12. I.V. Borgun, D.L. Ryabchikov, I.N. Sereda,
A.F. Tseluyko. Experimental simulation of metal-
hydride cathode working in Penning discharge //
Problems of Atomic Sci. and Tech. Series "Plasma
Phys". 2013, № 1(83), 2013, p. 228-230.
13. A.V. Agarkov, D.L. Ryabchikov, I.N. Sereda,
A.F. Tseluyko. PIG with metal-hydride cathode under
ion-stimulated desorbtion of hydrogen // Problems of
Atomic Sci. and Tech. Series “Plasma Electronics and
New Acceleration Methods”. 2013, № 4(86), p. 301-
303.
Article received 22.10.2016
ПРОДОЛЬНОЕ ИЗВЛЕЧЕНИЕ ИОНОВ Н
–
ИЗ РАЗРЯДА ПЕННИНГА С МЕТАЛЛОГИДРИДНЫМ
КАТОДОМ
И.Н. Середа, А.Ф. Целуйко, Д.Л. Рябчиков, Е.В. Бабенко, Я.А. Гречко, В.А. Гетман
Исследуется способность пеннинговского разряда с насыщенным водородом металлогидридным катодом
эмитировать отрицательные ионы водорода Н
–
в продольном направлении. Это становится возможным бла-
годаря взаимному влиянию активированного водорода, десорбируемого из металлогидрида, на свойства
разряда. С целью сепарации отрицательных ионов из извлекаемого потока заряженных частиц применяется
электромагнитный фильтр. Эффективность работы фильтра исследована экспериментально и определены
оптимальные внешние параметры для сепарации ионов Н
–
. Приведены экспериментальные данные по из-
влечению отрицательных ионов вдоль магнитного поля из пеннинговского разряда. Получен ток пучка ио-
нов Н
–
на уровне 5 мкА.
ПОЗДОВЖНЄ ВИТЯГУВАННЯ ІОНІВ Н
–
З РОЗРЯДУ ПЕНІНГА З МЕТАЛОГІДРИДНИМ
КАТОДОМ
І.М. Середа, О.Ф. Целуйко, Д.Л. Рябчиков, Є.В. Бабенко, Я.О. Гречко, В.А. Гетман
Досліджується здатність пеннінговского розряду з насиченим воднем металогідридним катодом емітува-
ти негативні іони водню Н
–
в поздовжньому напрямку. Це стає можливим завдяки взаємному впливу акти-
вованого водню, що десорбується з металогідриду, на властивості розряду. З метою сепарації негативних
іонів з потоку заряджених частинок, що витягається, застосовується електромагнітний фільтр. Ефективність
роботи фільтра досліджена експериментально і визначені оптимальні зовнішні параметри для сепарації іонів
Н
–
. Наведено експериментальні дані по вилученню негативних іонів уздовж магнітного поля з пеннінговско-
го розряду. Отримано струм пучка іонів Н
–
на рівні 5 мкА.
|