Heavy ion beam probing – a tool to study geodesic acoustic modes and alfven eigenmodes in the T-10 tokamak and TJ-II stellarator
Heavy ion beam probing (HIBP) is a unique diagnostic for core plasma potential. It operates in the T-10 tokamak and TJ-II flexible heliac. Multi-slits energy analyzers provide simultaneously the data on plasma potential φ (by beam extra energy), plasma density (by beam current) and Bpol (by beam tor...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/122170 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Heavy ion beam probing – a tool to study geodesic acoustic modes and alfven eigenmodes in the T-10 tokamak and TJ-II stellarator / A.V. Melnikov, L.I. Krupnik, J.M. Barcala, A. Bravo, A.A. Chmyga, G.N. Deshko, M.A. Drabinskij, L.G. Eliseev, C. Hidalgo, P.O. Khabanov, N.K. Kharchev, A.D. Komarov, A.S. Kozachek, S.M. Khrebtov, J. Lopez, S.E. Lysenko, A. Molinero, J.L. de Pablos, M.V. Ufimtsev, V.N. Zenin, A.I. Zhezhera // Вопросы атомной науки и техники. — 2017. — № 1. — С. 237-240. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-122170 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1221702017-06-29T03:02:56Z Heavy ion beam probing – a tool to study geodesic acoustic modes and alfven eigenmodes in the T-10 tokamak and TJ-II stellarator Melnikov, A.V. Krupnik, L.I. Barcala, J.M. Bravo, A. Chmyga, A.A. Deshko, G.N. Drabinskij, M.A. Eliseev, L.G. Hidalgo, C. Khabanov, P.O. Kharchev, N.K. Komarov, A.D. Kozachek, A.S. Khrebtov, S.M. Lopez, J. Lysenko, S.E. Molinero, A. de Pablos, J.L. Ufimtsev, M.V. Zenin, V.N. Zhezhera, A.I. Диагностика плазмы Heavy ion beam probing (HIBP) is a unique diagnostic for core plasma potential. It operates in the T-10 tokamak and TJ-II flexible heliac. Multi-slits energy analyzers provide simultaneously the data on plasma potential φ (by beam extra energy), plasma density (by beam current) and Bpol (by beam toroidal shift) in 5 poloidally shifted sample volumes. Thus, the poloidal electric field and the electrostatic turbulent particle flux are derived. The fine focused (<1 cm) and intense (100 μA) beams provide the measurements in the wide density interval ne=(0.3...5)×10¹⁹ m⁻³, while the advanced control system for primary and secondary beams provides the measurements in the wide range of the plasma currents in T-10 and magnetic configurations in TJ-II, including Ohmic, ECR and NBI heated plasmas. Low-noise high-gain (10⁷ V/A) preamplifiers with 300 kHz bandwidth and 2 MHz sampling allow us to study quasi-coherent modes like Geodesic Acoustic Modes (GAMs) and Alfvén Eigenmodes (AEs). The spatial location, poloidal rotation velocity and mode numbers for GAMs and AEs were studied in the core plasmas. Зондирование пучком тяжёлых ионов (ЗПТИ) является уникальной диагностикой для исследования потенциала горячей плазмы, она работает на токамаке T-10 и стеллараторе TJ-II. Многощелевые анализаторы позволяют одновременно определять потенциал, плотность и полоидальное магнитное поле в пяти точках измерения в плазме, что позволяет найти полоидальное электрическое поле и турбулентный поток частиц. Хорошо сфокусированные (< 1 см) интенсивные (100 мкА) пучки позволяют вести измерения в широком интервале плотностей n‾e=(0.3...5)×10¹⁹ m⁻³, а система управления первичным и вторичным пучками обеспечивает измерения в пределах изменения параметров T-10 и TJ-II, включая режимы омического, электронно-циклотронного и инжекционного нагревов плазмы. Исследованы геодезические акустические моды и альфвеновские собственные моды частотой до 300 кГц. Зондування пучком важких іонів (ЗПВІ) є унікальна система діагностики для дослідження потенціалу в гарячій плазмі на токамаці Т-10 та стелараторі TJ-II. Аналізатори з багатою кількістю апертур дозволяють одночасно вимірювати потенціал, густину та полоїдальне магнітне поле у п’яти об’ємах плазми, що дозволяє знайти полоїдальне електричне поле та турбулентний потік часток. Гарно сфокусовані (< 1 см) інтенсивні (100 мкА) пучки дозволяють провести вимірювання в широкому інтервалі n‾e=(0.3...5)×10¹⁹ m⁻³ густини, а система керування первинним та вторинним пучками забезпечує вимірювання у межах діапазону зміни параметрів T-10 та TJ-II, які включають у себе режими омічного, електронно-циклотронного та інжекційного нагрівів плазми. Досліджено геодезичні акустичні моди і альфвенівські коливання особистої моди частотою до 300 кГц. 2017 Article Heavy ion beam probing – a tool to study geodesic acoustic modes and alfven eigenmodes in the T-10 tokamak and TJ-II stellarator / A.V. Melnikov, L.I. Krupnik, J.M. Barcala, A. Bravo, A.A. Chmyga, G.N. Deshko, M.A. Drabinskij, L.G. Eliseev, C. Hidalgo, P.O. Khabanov, N.K. Kharchev, A.D. Komarov, A.S. Kozachek, S.M. Khrebtov, J. Lopez, S.E. Lysenko, A. Molinero, J.L. de Pablos, M.V. Ufimtsev, V.N. Zenin, A.I. Zhezhera // Вопросы атомной науки и техники. — 2017. — № 1. — С. 237-240. — Бібліогр.: 14 назв. — англ. 1562-6016 PACS: 52.35.Mw, 52.35.Ra, 52.55.Fa http://dspace.nbuv.gov.ua/handle/123456789/122170 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Диагностика плазмы Диагностика плазмы |
spellingShingle |
Диагностика плазмы Диагностика плазмы Melnikov, A.V. Krupnik, L.I. Barcala, J.M. Bravo, A. Chmyga, A.A. Deshko, G.N. Drabinskij, M.A. Eliseev, L.G. Hidalgo, C. Khabanov, P.O. Kharchev, N.K. Komarov, A.D. Kozachek, A.S. Khrebtov, S.M. Lopez, J. Lysenko, S.E. Molinero, A. de Pablos, J.L. Ufimtsev, M.V. Zenin, V.N. Zhezhera, A.I. Heavy ion beam probing – a tool to study geodesic acoustic modes and alfven eigenmodes in the T-10 tokamak and TJ-II stellarator Вопросы атомной науки и техники |
description |
Heavy ion beam probing (HIBP) is a unique diagnostic for core plasma potential. It operates in the T-10 tokamak and TJ-II flexible heliac. Multi-slits energy analyzers provide simultaneously the data on plasma potential φ (by beam extra energy), plasma density (by beam current) and Bpol (by beam toroidal shift) in 5 poloidally shifted sample volumes. Thus, the poloidal electric field and the electrostatic turbulent particle flux are derived. The fine focused (<1 cm) and intense (100 μA) beams provide the measurements in the wide density interval ne=(0.3...5)×10¹⁹ m⁻³, while the advanced control system for primary and secondary beams provides the measurements in the wide range of the plasma currents in T-10 and magnetic configurations in TJ-II, including Ohmic, ECR and NBI heated plasmas. Low-noise high-gain (10⁷ V/A) preamplifiers with 300 kHz bandwidth and 2 MHz sampling allow us to study quasi-coherent modes like Geodesic Acoustic Modes (GAMs) and Alfvén Eigenmodes (AEs). The spatial location, poloidal rotation velocity and mode numbers for GAMs and AEs were studied in the core plasmas. |
format |
Article |
author |
Melnikov, A.V. Krupnik, L.I. Barcala, J.M. Bravo, A. Chmyga, A.A. Deshko, G.N. Drabinskij, M.A. Eliseev, L.G. Hidalgo, C. Khabanov, P.O. Kharchev, N.K. Komarov, A.D. Kozachek, A.S. Khrebtov, S.M. Lopez, J. Lysenko, S.E. Molinero, A. de Pablos, J.L. Ufimtsev, M.V. Zenin, V.N. Zhezhera, A.I. |
author_facet |
Melnikov, A.V. Krupnik, L.I. Barcala, J.M. Bravo, A. Chmyga, A.A. Deshko, G.N. Drabinskij, M.A. Eliseev, L.G. Hidalgo, C. Khabanov, P.O. Kharchev, N.K. Komarov, A.D. Kozachek, A.S. Khrebtov, S.M. Lopez, J. Lysenko, S.E. Molinero, A. de Pablos, J.L. Ufimtsev, M.V. Zenin, V.N. Zhezhera, A.I. |
author_sort |
Melnikov, A.V. |
title |
Heavy ion beam probing – a tool to study geodesic acoustic modes and alfven eigenmodes in the T-10 tokamak and TJ-II stellarator |
title_short |
Heavy ion beam probing – a tool to study geodesic acoustic modes and alfven eigenmodes in the T-10 tokamak and TJ-II stellarator |
title_full |
Heavy ion beam probing – a tool to study geodesic acoustic modes and alfven eigenmodes in the T-10 tokamak and TJ-II stellarator |
title_fullStr |
Heavy ion beam probing – a tool to study geodesic acoustic modes and alfven eigenmodes in the T-10 tokamak and TJ-II stellarator |
title_full_unstemmed |
Heavy ion beam probing – a tool to study geodesic acoustic modes and alfven eigenmodes in the T-10 tokamak and TJ-II stellarator |
title_sort |
heavy ion beam probing – a tool to study geodesic acoustic modes and alfven eigenmodes in the t-10 tokamak and tj-ii stellarator |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2017 |
topic_facet |
Диагностика плазмы |
url |
http://dspace.nbuv.gov.ua/handle/123456789/122170 |
citation_txt |
Heavy ion beam probing – a tool to study geodesic acoustic modes and alfven eigenmodes in the T-10 tokamak and TJ-II stellarator / A.V. Melnikov, L.I. Krupnik, J.M. Barcala, A. Bravo, A.A. Chmyga, G.N. Deshko, M.A. Drabinskij, L.G. Eliseev, C. Hidalgo, P.O. Khabanov, N.K. Kharchev, A.D. Komarov, A.S. Kozachek, S.M. Khrebtov, J. Lopez, S.E. Lysenko, A. Molinero, J.L. de Pablos, M.V. Ufimtsev, V.N. Zenin, A.I. Zhezhera // Вопросы атомной науки и техники. — 2017. — № 1. — С. 237-240. — Бібліогр.: 14 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT melnikovav heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT krupnikli heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT barcalajm heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT bravoa heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT chmygaaa heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT deshkogn heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT drabinskijma heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT eliseevlg heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT hidalgoc heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT khabanovpo heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT kharchevnk heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT komarovad heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT kozachekas heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT khrebtovsm heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT lopezj heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT lysenkose heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT molineroa heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT depablosjl heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT ufimtsevmv heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT zeninvn heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator AT zhezheraai heavyionbeamprobingatooltostudygeodesicacousticmodesandalfveneigenmodesinthet10tokamakandtjiistellarator |
first_indexed |
2025-07-08T21:17:08Z |
last_indexed |
2025-07-08T21:17:08Z |
_version_ |
1837115042282078208 |
fulltext |
ISSN 1562-6016. ВАНТ. 2017. №1(107)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2017, № 1. Series: Plasma Physics (23), p. 237-240. 237
HEAVY ION BEAM PROBING – A TOOL TO STUDY GEODESIC
ACOUSTIC MODES AND ALFVEN EIGENMODES IN THE T-10
TOKAMAK AND TJ-II STELLARATOR
A.V. Melnikov
1,2
, L.I. Krupnik
3
, J.M. Barcala
4
, A. Bravo
4
, A.A. Chmyga
3
, G.N. Deshko
3
,
M.A. Drabinskij
1,5
, L.G. Eliseev
1
, C. Hidalgo
4
, P.O. Khabanov
1,5
, N.K. Kharchev
1,6
,
A.D. Komarov
3
, A.S. Kozachek
3
, S.M. Khrebtov
3
, J. Lopez
4
, S.E. Lysenko
1
, A. Molinero
4
,
J.L. de Pablos
4
, M.V. Ufimtsev
7
, V.N. Zenin
1
, A.I. Zhezhera
3
1
National Research Centre ''Kurchatov Institute'', Moscow, Russia;
2
National Research Nuclear University MEPhI, Moscow, Russia;
3
Institute of Plasma Physics of the NSC KIPT, Kharkov, Ukraine;
4
CIEMAT, Madrid, Spain;
5
Moscow Institute of Physics and Technology, Dolgoprudny, Russia;
6
Institute of General Physics, RAS, Moscow, Russia;
7
Department of Computational Mathematics and Cybernetics, MSU, Moscow, Russia
E-mail: melnikov_07@yahoo.com
Heavy ion beam probing (HIBP) is a unique diagnostic for core plasma potential. It operates in the T-10 tokamak
and TJ-II flexible heliac. Multi-slits energy analyzers provide simultaneously the data on plasma potential (by
beam extra energy), plasma density (by beam current) and Bpol (by beam toroidal shift) in 5 poloidally shifted
sample volumes. Thus, the poloidal electric field and the electrostatic turbulent particle flux are derived. The fine
focused (<1 cm) and intense (100 A) beams provide the measurements in the wide density interval
ne=(0.3...5)10
19
m
-3
, while the advanced control system for primary and secondary beams provides the
measurements in the wide range of the plasma currents in T-10 and magnetic configurations in TJ-II, including
Ohmic, ECR and NBI heated plasmas. Low-noise high-gain (10
7
V/A) preamplifiers with 300 kHz bandwidth and
2 MHz sampling allow us to study quasi-coherent modes like Geodesic Acoustic Modes (GAMs) and Alfvén
Eigenmodes (AEs). The spatial location, poloidal rotation velocity and mode numbers for GAMs and AEs were
studied in the core plasmas.
PACS: 52.35.Mw, 52.35.Ra, 52.55.Fa
INTRODUCTION
HIBP [1, 2] is well known as a unique tool for the
direct measurement of the plasma potential in the core
plasma of toroidal fusion devices. HIBP successfully
operated in the middle-size tokamaks like TEXT, JIPPT-
2U, JFT-2M and stellarator CHS, and also in smaller
devices like TJ-I tokamak and WEGA stellarator [3].
Now HIBP is in operation in the TUMAN-3M and
ISSTOK tokamaks, MST reversed field pinch and LHD
stellarator. There are also proposals to install HIBP in
the W7-X stellarator and COMPASS tokamak and also
preliminary proposals for ITER. On top of that an
advanced HIBP routinely operates in the T-10 tokamak
[4] and TJ-II stellarator [5]. This paper is focused in the
recent HIBP advances performed at these two machines
directed to study of quasicoherent modes like Geodesic
Acoustic Modes (GAMs) and Alfvén Eigenmodes
(AEs). GAM is a high frequency branch of the Zonal
flows, which are considered to be a turbulence self-
regulation mechanism [3]. There are also GAMs, which
are excited by supra-thermal electrons or fast ions,
appeared due to NBI heating, the so-called e-GAMs.
AEs are magneto-hydrodynamic instabilities, excited by
fast electrons or by fast ions appeared due to NBI or
ICRF heating. AEs may affect the fast ion losses and
also thermal particle losses, so affect the plasma
confinement. AEs excited by fusion alphas may be
dangerous for the plasma performance of future
reactors. It was found that GAMs are the low-frequency
limit of AEs. The importance of the GAMs and AEs for
plasma confinement and the links between them claim
for the diagnostic tool to study directly GAMs and AEs
in the core plasma regions of fusion devices. GAMs are
pronounced mostly in the plasma potential, so the
application of HIBP for the GAM studies is quite
natural. AEs, as the electromagnetic oscillations
propagating along the magnetic field lines, manifest
themselves as oscillations in plasma electric potential,
poloidal magnetic field and also in plasma pressure
(density). The ability of the advanced HIBP to measure
these three quantities simultaneously makes it an
effective tool to study AEs, their properties and location.
The paper discusses the diagnostics capabilities and
limitations and gives the survey of recent studies of
GAM in T-10 and AE in TJ-II.
1. MULTICHANNEL ENERGY ANALYZERS
IN T-10 AND TJ-II
HIBP is a direct diagnostic for studying the electric
potential and its oscillations. It was recently upgraded
mailto:vitalyzenin@mail.ru
238 ISSN 1562-6016. ВАНТ. 2017. №1(107)
to the 5-channel energy analyzer, presented in Fig. 1. In
both T-10 and TJ-II the analyzers with similar design
are in operation now.
Fig. 1. The five-slit energy analyzer. B – beam;
D detectors; G – grid; GP – ground plate;
HVP – high-voltage plate; W – window;
5-S entrance slits
This new analyzer with 5 entrance slits allows us to
carry out simultaneous measurements of plasma
potential, density
en and Bpol in 5 neighboring sample
volumes. The adjustment procedure were performed to
get the location of sample volumes as close as possible
to desired magnetic flux surfaces that allows us to
estimate the local value of poloidal electric field
Epol =(1-2)/x, (1)
wherex ~1 cm. This limits the poloidal wave vector,
k < 3 cm
-1
. The radial EB drift velocity is
Vr = Epol/Btor. (2)
Finally, the radial turbulent particle flux is
r(t) = e rn V = 1/Btor ( )en t
polE
~
(t) = EB. (3)
For the analysis of the flux dynamics in arbitrary
units, or for frequency spectra analysis, the relative data
for density oscillations ( ) ( ) /e t tn t I t I is sufficient. In
the low-density case, for the estimation of the absolute
value of EB(t),
en may be replaced by ( )tI t . In the
higher-density case, one should take into account the
attenuation effect by the expression:
e/e t tn I I n , where oscillatory component /t tI I is
measured by HIBP and normalization factorne is
provided by other diagnostics like interferometry. This
way allows us to extract EB for the first time in the
core plasma of the T-10 tokamak [6] and the TJ-II
stellarator [7].
2. GAM STUDIES IN T-10
Basic principles of HIBP measurements of plasma
parameters were described in [8] in application to
GAM. In T-10 we use Tl
+
ions with energy Eb up to
280 keV. Varying the beam energy and entrance angle
into the plasma, we can scan the sample volume
spatially and form the detector grid – the observation
area in plasma. For each slit of the energy analyzer (see
Fig. 1) the spatial resolution < 1…2 cm and temporal
resolution <5 s was provided at the radii 6 < r < 30 cm
for Btor < 2.1 T [9]. GAMs are typically observed as a
pronounced monochromatic peak in the frequency
power spectra of electric potential in the core plasma
and at the edge as well [10], as presented in Fig. 2.
400 500 600 700 800 900
1.50
1.75
2.00
2.25
n e (1
019
m
-3
)
time (ms)
a
b
10 12 14 16 18 20 22 24 26 28 30 32
0.00
0.05
0.10
0.15
0.20
p
s
d
(
k
V
2
/k
H
z
)
f (kHz)
t=697.105
t=704.669#62759
GAM
satellite
c
Fig. 2. Power spectrogram of plasma potential with
pronounced main GAM peak and satellite, evolving in
time (a); time evolution of the line-averaged density (b);
two examples of the power frequency spectra (c);
showing the robustness of the spectral structure of GAM
The cross-phase analysis [11] of the potential
perturbation measured simultaneously in two sample
volumes, separated poloidally at the same magnetic
surface, shows that poloidal mode number of the GAM
is zero over the observation area, as presented in Fig. 3.
0,5 0,6 0,7 0,8 0,9
-0,6
-0,4
-0,2
0,0
0,2
0,4
0,6
-3
-2
-1
0
1
2
3
p
h
a
s
e
s
h
if
t
(
ra
d
)
m
Fig. 3. Phase shift and poloidal mode number of GAM
oscillations measured by 5-slits analyzer
ISSN 1562-6016. ВАНТ. 2017. №1(107) 239
Fig. 4 shows cumulative data over all discharges with
Ohmic and ECR heating at different currents 140 < Ip <
300 kA and densities 110
19
m
-3
<ne < 610
19
m
-3
. Fat
red line corresponds to theoretical prediction:
1
2 /
2
e
GAM e if T m
R
, (4)
dashed lines mark 10% deviations from (4).
0,0 0,1 0,2 0,3 0,4 0,5
0
5
10
15
20
n
e
(10
19
m
-3
)
1
1.5
2
2.5
3
3.5
4
5
6
I
p
(kA)
140-180 small
200-235 middle
250-300 large
fr
e
q
u
e
n
c
y
f
(
k
H
z
)
T
e
(=0.7) (keV)
Fig. 4. Dependence of GAM frequency on the electron
temperature at the radius = 0.7. Cumulative data over
all discharges with different currents 140 kA<Ip<
300 kA and densities 110
19
m
-3
<ne<610
19
m
-3
are
marked by symbols of different sizes and colors. Lines
correspond to the theoretical square root
e
GAMf dependence on Te with 10 % variation
Fig. 4 shows the overall agreement of the
observation with theoretical prediction within
experimental accuracy. It was also shown with HIBP
that GAM has almost constant frequency over almost
whole radial range, which suggest the character of the
global eigenmode [12].
3. AE STUDIES IN TJ-II
Due to its capability to measure simultaneously
potential, Bpol and density oscillations, HIBP is the most
direct diagnostics to study AE [12], an electromagnetic
wave, propagating along the magnetic field lines of
plasma configuration and producing the oscillatory
components of Er, Bpol and plasma pressure (density).
AEs are visible in all three HIBP parameters as
presented in their spectrograms in Fig. 5. Various
modes, marked with numbers are clearly detectable in
the NBI heated phase of the discharge [13]. The time
evolution of the mode frequencies follows the Alfvén
law:
||
2
e
AE
k n
f
B
. (5)
The spatial scan of the sample volume allows us to find
a radial location for each mode, as shown in Fig. 6 [14].
Fig. 5. PSD spectrograms of HIBP ( = -0.5) and
Magnetic Probe (MP) signals in arb. units. Alfvén
Eigenmodes are pronounced: on the total secondary
beam current It proportional to ne (a); on the potential
(b); on the toroidal shift of secondary beam
proportional to Bpol (c); on the MP signal (d). Yellow
curve in (d) shows the line-averaged densityne
Fig. 6. The AE radial distribution measured by HIBP
radial scan: the spectrogram of plasma density
perturbation obtained by the radial scan from SV = 1 at
LFS to SV = -1 at HFS (a); the time traces of the mode
amplitude (blue) (b); corresponding to the frequencies
in the marked range of panel (c); vac (0) (red),
and SV (black)
CONCLUSIONS
HIBP was recently upgraded with the multichannel
energy analyzer in T-10 and TJ-II. These advanced
HIBPs appear to be the effective tool to direct internal
study of GAM and AEs. The recent HIBP data proves
the identification of GAM and AEs and provides the
new data of the mode features, poloidal strictures and
spatial location.
a
b
c
d
240 ISSN 1562-6016. ВАНТ. 2017. №1(107)
ACKNOWLEDGEMENTS
The research was performed by financial support of
Russian Science Foundation, project 14-22-00193.
REFERENCES
1. A.V. Melnikov. Applied and fundamental aspects of
fusion science // Nature Physics. 2016, v. 12, p. 386.
2. Yu.N. Dnestrovskij et al. Development of heavy ion
beam probe diagnostics // IEEE Trans. Plasma Sci.
1994, v. 22, p. 310.
3. A. Fujisawa et al. Experimental progress on zonal
flow physics in toroidal plasmas // Nucl. Fusion. 2007,
v. 47, p. S718.
4. A.V. Melnikov et al. HIBP diagnostics on T-10 //
Rev. Sci. Instrum. 1995, v. 66, p. 317.
5. I.S. Bondarenko et al. Installation of an advanced
heavy ion beam diagnostic on the TJ-II stellarator //
Rev. Sci. Instrum. 2001, v. 72, p. 583.
6. L.G. Eliseev et al. PAST. Series "Plasma Physics".
2017, v. 107, № 1(23), p. 245.
7. A.V. Melnikov et al. The changes in plasma potential
and turbulent particle flux in the core plasma measured
by heavy ion beam probe during L-H transitions in the
TJ-II stellarator // Nucl. Fusion. 2013, v. 53, p. 092002.
8. A.V. Melnikov et al. Investigation of the plasma
potential oscillations in the range of geodesic acoustic
mode frequencies by heavy ion beam probing in
tokamaks // Czech. J. Phys. 2005, v. 55, p. 349.
9. A.V. Melnikov et al. The features of the global GAM
in OH and ECRH plasmas in the T-10 tokamak // Nucl.
Fusion. 2015, v. 55, p. 063001.
10. A.V. Melnikov et al. Investigation of geodesic
acoustic modes oscillations in the T-10 tokamak //
Plasma Phys. Control. Fusion. 2006, v. 48, p. S87.
11. L.G. Eliseev et al. Two Point Correlation Technique
for the Measurements of Poloidal Plasma Rotation by
Heavy Ion Beam Probe // Plasma Fusion Research.
2012, v. 7, p. 2402064.
12. A.V. Melnikov et al. Internal measurements of
Alfvén eigenmodes with heavy ion beam probing in
toroidal plasmas // Nucl. Fusion. 2010, v. 50, p. 084023.
13. A.V. Melnikov et al. Alfvén Eigenmodes properties
and dynamics in the TJ-II stellarator // Nucl. Fusion.
2012, v. 52, p. 123004.
14. A.V. Melnikov et al. Study of NBI-driven chirping
mode properties and radial location by the heavy ion
beam probe in the TJ-II stellarator // Nucl. Fusion. 2016,
v. 52, p. 123004.
Article received 30.09.2016
ЗОНДИРОВАНИЕ ПУЧКОМ ТЯЖЕЛЫХ ИОНОВ – МЕТОД ИССЛЕДОВАНИЯ ГЕОДЕЗИЧЕСКИХ
АКУСТИЧЕСКИХ И АЛЬФВЕНОВСКИХ МОД НА ТОКАМАКЕ T-10 И СТЕЛЛАРАТОРЕ TJ-II
А.В. Мельников, Л.И. Крупник, Х.М. Баркала, A. Браво, А.А. Чмыга, Г.Н. Дешко, М.А. Драбинский,
Л.Г. Елисеев, К. Идальго, Ф.O. Хабанов, Н.K. Харчев, A.Д. Комаров, A.С. Козачек, С.M. Хребтов,
Х. Лопез, С.E. Лысенко, A. Молинеро, Х.Л. де Паблос, М.В. Уфимцев, В.Н. Зенин, A.И. Жежера
Зондирование пучком тяжёлых ионов (ЗПТИ) является уникальной диагностикой для исследования
потенциала горячей плазмы, она работает на токамаке T-10 и стеллараторе TJ-II. Многощелевые
анализаторы позволяют одновременно определять потенциал, плотность и полоидальное магнитное поле в
пяти точках измерения в плазме, что позволяет найти полоидальное электрическое поле и турбулентный
поток частиц. Хорошо сфокусированные (< 1 см) интенсивные (100 мкА) пучки позволяют вести измерения
в широком интервале плотностей ne=(0.3…5)10
19
м
-3
, а система управления первичным и вторичным
пучками обеспечивает измерения в пределах изменения параметров T-10 и TJ-II, включая режимы
омического, электронно-циклотронного и инжекционного нагревов плазмы. Исследованы геодезические
акустические моды и альфвеновские собственные моды частотой до 300 кГц.
ЗОНДУВАННЯ ПУЧКОМ ВАЖКИХ ІОНІВ – ЗАСІБ ДЛЯ ДОСЛІДЖЕННЯ ГЕОДЕЗИЧНИХ
АКУСТИЧНИХ ТА АЛЬФВЕНОВСЬКИХ МОД НА ТОКАМАЦІ Т-10 ТА СТЕЛАРАТОРІ TJ-II
О.В. Mельнiков, Л.І. Kрупнік, Х.М. Баркала, A. Браво, О.А. Чмига, Г.М. Дешко, М.А. Драбинський,
Л.Г. Єлісєєв, К. Ідальго, Ф.O. Хабанов, М.K. Харчев, О.Д. Комаров, О.С. Козачок, С.M. Хребтов, Х. Лопез,
С.Є. Лисенко, A. Молинеро, Х.Л. де Паблос, М.В. Уфімцев, В.М. Зенiн, О.І. Жежера
Зондування пучком важких іонів (ЗПВІ) є унікальна система діагностики для дослідження потенціалу в
гарячій плазмі на токамаці Т-10 та стелараторі TJ-II. Аналізатори з багатою кількістю апертур дозволяють
одночасно вимірювати потенціал, густину та полоїдальне магнітне поле у п’яти об’ємах плазми, що
дозволяє знайти полоїдальне електричне поле та турбулентний потік часток. Гарно сфокусовані (< 1 см)
інтенсивні (100 мкА) пучки дозволяють провести вимірювання в широкому інтерваліne=(0.3…5)10
19
м
-3
густини, а система керування первинним та вторинним пучками забезпечує вимірювання у межах діапазону
зміни параметрів T-10 та TJ-II, які включають у себе режими омічного, електронно-циклотронного та
інжекційного нагрівів плазми. Досліджено геодезичні акустичні моди і альфвенівські коливання особистої
моди частотою до 300 кГц.
|