The pair interaction forces and the friction and diffusion coefficients of particles in momentum space
Diffusion processes in momentum space in the systems containing a large number of particles are considered. The friction coefficient and diffusion tensor are derived directly on the bases of the dynamics of individual particles motion under the action of the pair interaction forces from each of them...
Gespeichert in:
Datum: | 2017 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/122173 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | The pair interaction forces and the friction and diffusion coefficients of particles in momentum space / V.V. Ognivenko // Вопросы атомной науки и техники. — 2017. — № 1. — С. 195-198. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-122173 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1221732017-06-29T03:02:57Z The pair interaction forces and the friction and diffusion coefficients of particles in momentum space Ognivenko, V.V. Низкотемпературная плазма и плазменные технологии Diffusion processes in momentum space in the systems containing a large number of particles are considered. The friction coefficient and diffusion tensor are derived directly on the bases of the dynamics of individual particles motion under the action of the pair interaction forces from each of them. The expression for the frictional force in the case of pre-Brownian motion of particles with Coulomb interaction is obtained. Рассмотрены процессы диффузии частиц в пространстве импульсов для системы, состоящей из большого числа частиц. Коэффициент трения и тензор диффузии получены исходя непосредственно из динамики движения отдельных частиц под действием сил парного взаимодействия со стороны каждой из них. Получено выражение для силы трения в случае предброуновского движения кулоновски взаимодействующих заряженных частиц. Розглянуто процеси дифузії частинок у просторі імпульсів для системи, що складається з великої кількості частинок. Коефіцієнт тертя й тензор дифузії отримані виходячи безпосередньо з динаміки руху окремих частинок під дією сил парної взаємодії з боку кожної з них. Отримано вираз для сили тертя у випадку передброунівського руху кулонівськи взаємодіючих заряджених частинок. 2017 Article The pair interaction forces and the friction and diffusion coefficients of particles in momentum space / V.V. Ognivenko // Вопросы атомной науки и техники. — 2017. — № 1. — С. 195-198. — Бібліогр.: 15 назв. — англ. 1562-6016 PACS: 52.20.Fs; 52.20.Hv; 52.25.Fi; 52.25.Gj http://dspace.nbuv.gov.ua/handle/123456789/122173 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Ognivenko, V.V. The pair interaction forces and the friction and diffusion coefficients of particles in momentum space Вопросы атомной науки и техники |
description |
Diffusion processes in momentum space in the systems containing a large number of particles are considered. The friction coefficient and diffusion tensor are derived directly on the bases of the dynamics of individual particles motion under the action of the pair interaction forces from each of them. The expression for the frictional force in the case of pre-Brownian motion of particles with Coulomb interaction is obtained. |
format |
Article |
author |
Ognivenko, V.V. |
author_facet |
Ognivenko, V.V. |
author_sort |
Ognivenko, V.V. |
title |
The pair interaction forces and the friction and diffusion coefficients of particles in momentum space |
title_short |
The pair interaction forces and the friction and diffusion coefficients of particles in momentum space |
title_full |
The pair interaction forces and the friction and diffusion coefficients of particles in momentum space |
title_fullStr |
The pair interaction forces and the friction and diffusion coefficients of particles in momentum space |
title_full_unstemmed |
The pair interaction forces and the friction and diffusion coefficients of particles in momentum space |
title_sort |
pair interaction forces and the friction and diffusion coefficients of particles in momentum space |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2017 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/122173 |
citation_txt |
The pair interaction forces and the friction and diffusion coefficients of particles in momentum space / V.V. Ognivenko // Вопросы атомной науки и техники. — 2017. — № 1. — С. 195-198. — Бібліогр.: 15 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT ognivenkovv thepairinteractionforcesandthefrictionanddiffusioncoefficientsofparticlesinmomentumspace AT ognivenkovv pairinteractionforcesandthefrictionanddiffusioncoefficientsofparticlesinmomentumspace |
first_indexed |
2025-07-08T21:17:27Z |
last_indexed |
2025-07-08T21:17:27Z |
_version_ |
1837115060398325760 |
fulltext |
ISSN 1562-6016. ВАНТ. 2017. №1(107)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2017, № 1. Series: Plasma Physics (23), p. 195-198. 195
THE PAIR INTERACTION FORCES AND THE FRICTION AND
DIFFUSION COEFFICIENTS OF PARTICLES IN MOMENTUM SPACE
V.V. Ognivenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
V.N. Karasin Kharkiv National University, Kharkov, Ukraine
E-mail: ognivenko@kipt.kharkov.ua
Diffusion processes in momentum space in the systems containing a large number of particles are considered.
The friction coefficient and diffusion tensor are derived directly on the bases of the dynamics of individual particles
motion under the action of the pair interaction forces from each of them. The expression for the frictional force in
the case of pre-Brownian motion of particles with Coulomb interaction is obtained.
PACS: 52.20.Fs; 52.20.Hv; 52.25.Fi; 52.25.Gj
INTRODUCTION
The transport phenomena and relaxation processes
in the systems consisting of a large number of particles
are studied using the kinetic equations (see, e.g., [1-6]).
The collision integrals occurring in these equations are
derived for specific studied physical processes. Thus for
a fully ionized plasma the integral of collisions has been
obtain in [1] by transformation of Boltzmann’s collision
integral. The general method of construction of the
kinetic equations from equations of motion of particles
has been given in [2].
The kinetic equations describe the evolution of
particles systems on times greater than some
characteristic time of particles motion randomization.
Therefore the friction and diffusion of the charged
particles in momentum space are investigated
theoretically by means of such equations at a kinetic
stage of the system evolution, when motion of particles
is completely random. For a smaller time intervals, in
case of pre-Brownian motion of the particles, the
expression for mean square spread in momenta of
Coulomb interacting nonrelativistic charged particles
was derived in [7] based on the dynamics of particles
motion. The same method was used to investigate the
diffusion in momenta space at collisions of the
relativistic charged particles [8]. The change of the
mean square spread in momenta of the charged particles
under the influence of their electromagnetic radiation in
external periodic fields was investigated in [9-12].
In the given work the change in mean value of
momentum of nonrelativistic particles in the absence of
external fields is considered. The expression for the
friction force describing average change of particles
momentum per a time unit, both at the kinetic stage of
evolution of a system, and at the initial stage in the case
of pre-Brownian motion of particles is derived. The
relationship between mean square spread in momenta of
particles and the frictional force at the initial stage of
evolution of system is analyzed.
1. FRICTION FORCE AND DIFFUSION
COEFFICIENTS
Let's consider the system consisting of N identical,
nonrelativistic particles, occupying volume V, whose
motion complies with laws of classical mechanics with
arbitrary interaction between particles. The equations of
motion of the individual (test) particle we will write in
the form
N
s
ss
s xtxttxttx
dt
d
1
0,,,, FF
p
, (1)
v
r
dt
d
, (2)
where r and p are the coordinates and momentum of
particle, vp m , m is a particle mass, F is microscopic
force, s
F is the pair interaction force of particles,
pr,x is the set of coordinates and momentum of
particles, sssx 000 ,pr is the coordinates and
momentum of s-th particle at the initial instant t0.
We will assume that pair interaction force between
particles is known. Integration in the Eqs. (1) and (2)
yields the expressions for the coordinates and
momentum of particle
t
t
ttxtdt
0
,0 Fpp , (3)
t
t
ttxtttdtt
0
,0
Frr , (4)
where
000
0 ttr vr .
Neglecting influence of average forces on motion of
particles, we will consider small deviations of the
coordinates and the momentum ( r , p ) from
equilibrium values, where 0
rrr , 0ppp .
Expanding the expression for microscopic force into
series on small deviations from equilibrium values in
the right-hand side of Eq. (1), taking into account the
Eqs. (3) and (4), we obtain the following equation for
average change of the momentum of the test particle per
unit time:
,,,,
1
,
0
0
011
0
t
t
txx
jij
ii
ttxFtxFttxLtd
m
ttxFp
dt
d
(5)
196 ISSN 1562-6016. ВАНТ. 2017. №1(107)
where
jj
j
y
ttxL
v
,
, 0
00 ,prx , angular
brackets mean the ensemble average, yj is the Cartesian
coordinates of the vector r , j=1,2,3.
The first term in the Eq. (5) describes the change in
momentum caused by influence of forces induced by the
particle, as we neglect the influence of the average
forces on particles motion. In particular this term
corresponds to polarization losses by a charged particle
passing through plasma. The second term in this
equation describes the change in the momentum due to
the fluctuation forces acting on the test particle from
other particles. Below we will consider this frictional
force.
The equation for diffusion coefficient in momenta
space is
,',',
',','
0
ttFttF
ttFttFdtpp
dt
d
ij
t
t
jiji
rr
rr
where FF F . (6)
The average values of product of microscopic forces
and the space-time correlation function of fluctuations
of the forces appear in the integrand on the right-hand
side of the Eqs. (5) and (6), calculated by means of the
function of dynamic state of considered system in 6N-
dimensional phase space of coordinates and momenta of
particles at the initial instant t0 [7, 8], is
,;,,;,F
,;,F11
,,,
0201002012022
1
011
1
dxdxtxxfxtxtx
xtxtxN
ttKtxFtxF
j
i
ijji
(7)
tFtFtFtFtFtF jijiji ,
,,,;,F,;,F
,
000101
1
01
1
dxtxfxtxtxxtxtx
ttK
ji
ij
(8)
where 001 ,txf is the single-particle distribution
function, 0002 ,, txxf is the two-particle distribution
function.
Using the principle of the correlations reduction at
the initial instant t0, we write
0010010002 ,,,, txftxftxxf .
Then the second term in the right-hand side of the
formula (7) can be presented in the form of product of
average values of the microscopic forces. The
contribution of this term in the integrand on the right-
hand side of the Eq. (5) can be neglected, as on the
considered time interval the change of the average value
of the force on x is small, if these forces are not equal to
zero. Using the above mentioned assumptions, it is
possible to present the Eqs. (5) and (6) in the following
form:
t
t
ijjii ttKttxLtd
m
p
dt
d
A
0
,,
1
, (9)
ttKttKtdpp
dt
d
jiij
t
t
ji ,,
0
. (10)
These formulae can be used to calculate the friction
force and mean square spread in the momenta of
particles at the specific nature of their interaction in the
system.
2. COLLISIONS OF PARTICLES WITH
COULOMB INTERACTION
We will consider the system of the charged particles
with Coulomb interaction. The pair interaction force
acting on the particle with the charge q in the coordinate
r at the time t from the particle, moving on the
trajectory ss xt 0,r , we will present in the form of [13]
ss
s
s
xt
qxt
0
2
0
,
1
,,
rrr
rF
. (11)
Let's consider the spatially homogeneous system on
time intervals during which motion of particles does not
change essentially. Then the expression for the
trajectory of particle may be written as
000 ttsss vrr . We will substitute the pair
interaction force (11) in (8) and we will integrate on
initial coordinates 0rd , assuming that N and volume
V, so the density of particles VNn is constant.
Substituting the coordinates of test particle for its
unperturbed trajectories, passing thus to differentiation
on momentum [7, 8], we obtain the following
expression for the friction force due to the fluctuating
electric fields
t
t
ij
j
i ttKtttd
p
A
0
, , (12)
where
001
4
pp dfJqK ijij ,
,
ln
22
3
222
22
3
2
2
22
2
m
ji
m
mmmji
ijij
ru
uu
r
rrr
u
uu
J
0vvu , ttu , rmin is the minimum distance
between two particles used to eliminate the divergence
on integration over dr0 in Eq.(8) [7, 8].
After the integration on t, the expression for the
frictional force and change in time of the mean-square
momentum deviation from equilibrium value, becomes
,2 010
4 uGfd
p
qA ij
j
i pp , (13)
,4 010
4 uGfdqpp
dt
d
ijji pp , (14)
where
ISSN 1562-6016. ВАНТ. 2017. №1(107) 197
1ln23 2
32 u
uu
u
B
u
uu
G
jiji
ijij ,
x
x
xx
x
xB
2
1
1ln
2
1
1
2
2
2
,
minru , 0tt , ij is the Kronecker delta.
3. DISCUSSION
The Eqs. (13) and (14) describe the change in time
of the mean value of the momentum and mean square
spread in the momentum of particles on all considered
time interval, from the initial instant t0.
Let's consider the initial evolution stage of the
system, when time is less than characteristic time 0
randomization of particles motion in the considered
system, where urm0 , u is the mean speed of the
particles. For small values of the time <<0 expanding
the functions Gij in powers of as far as the third-order
terms, we find
jiijijij uuu
rr
G 2
153
2 2
3
min
3
min
. (15)
Substituting (15) in (13) and (14) we get:
0013
min
34
3
4
ppuA df
mr
q
, (16)
.
3
8
2
10
3
8
min
4
2
2
min
2
010
min
4
ijjiij
ijji
n
r
q
uuu
r
fd
r
q
pp
dt
d
pp
(17)
It is easy to see that the dynamical friction
experienced by the particles in the case of their pre-
Brownian motion is defined by the second term in
Eq. (15).
The mean square spread in the momentum of
particles at this stage of the evolution of the system is
governed mainly by the first term in the Eq. (15) and
increases proportionally to the square of the time [7]
2
min
4
2 4
n
r
q
p .
It should be noted that quadratic dependence of the
mean-square spread in velocity of particles on time at
the initial stage of the charged particles system
evolution was observed in many numerical experiments
[14].
From Eqs. (13) and (14) it follows that friction force
and the change in the mean-square spread in momenta
per unit time are connected by the relation
ji
j
i pp
dt
d
p
A
2
, (18)
which is valid for all times both at the pre-Brownian
particles motion and the kinetic stage of the system
evolution. For the kinetic stage such relation between
frictional force and diffusion coefficients also follows
from the collision integral.
For isotropic initial distribution of particles in
momenta from the Eq. (16) follows that the more the
velocity of the test particle, the more dynamical friction
is experienced by this particle
vA
3
min
34
3
4
mr
nq
,
where 001 pdpfn .
At the kinetic stage of the system evolution of the
charged particles with Coulomb interaction the
frictional force decreases as the particle velocity
increases [15].
From the formula (16) also follows that if there is a
stream of particles in the system, the particles with the
velocity higher than mean velocity of particles reduce
the velocity, and the particles with velocity low than
mean velocity increase the velocity.
At the pre-Brownian stage of the system evolution
of the charged particles with Coulomb interaction the
change in time of mean value of the momentum of the
test particle due to the fluctuations of the field is
proportional to the third power of time and can be
smaller than the changes in time of a mean-square
momenta spread at this stage, which is proportional to
the time.
For >> 0 at the kinetic stage of the system
evolution, when motion of particles is completely
random, asymptotic expression of the friction force (13)
derived for >> 1, becomes
,2
2
11
3
2
32
010
4
u
uu
uu
uu
fd
p
qA
jiji
ij
j
i pp
(19)
where
min
2
ln
r
u
.
When 1 the expression (19) agrees with the
corresponding formulas of [1].
REFERENCES
1. L.D. Landau. Kineticheskoe uravnenie v sluchae
kulonovskogo vzaimodeistviya // ZhETF. 1937, v. 7,
№ 2, p. 203-209 (in Russian).
2. N.N. Bogolyubov. Problems of Dynamical Theory in
Statictical Physics. Moscow: “Gostekhteorizdat”, 1946;
Interscience: “New York”, 1962.
3. V.P. Silin. Introduction to Kinetic Theory of Gases.
Moscow: “Nauka”, 1971 (in Russian).
4. A.I. Akhiezer and S.V. Peletminskii. Methods of
Statistical Physics. Moscow: “Nauka”, 1977; Pergamon:
“Oxford”, 1981.
5. A.G. Sitenko. Fluktuatsii i nelineinoe vzaimodeistvie
voln v plazme. Kiev: “Naukova dumka”, 1977 (in
Russian).
6. Yu.L. Klimontovich. Statistical Physics. Moscow:
“Nauka”,1982; New York: “Gordon and Breach”, 1986.
7. V.V. Ognivenko. Dinamicheskii vyvod koeffitsienta
diffuzii po impul’sam kulonovski
vzaimodeistvuyushchikh zaryazhenykh chastits//
Dopov. NAN Ukr. 2013, № 3, p. 65-70.
8. V.V. Ognivenko. Dynamical derivation of
momentum diffusion coefficients at collisions of
relativistic charged particles// J. Exp. Theor. Phys. 2016,
198 ISSN 1562-6016. ВАНТ. 2017. №1(107)
v. 122, № 1, p. 203-208; Zh. Eksp. Teor. Fiziki. 2016,
v. 149, № 1, p. 230-236 (in Russian).
9. V.V. Ognivenko. Heating of charged particles at
Thomson scattering of a monochromatic
electromagnetic wave // Problems of Atomic Science
and Technology. Series “Plasma Physics”. 2007, № 1,
p. 130-132.
10. V.V. Ognivenko. Threshold of spontaneous
emission amplification by relativistic electron beam in
undulator // Problems of Atomic Science and
Technology. Series “Nuclear Physics Investigations”.
2008, № 3, p. 145-147.
11. V.V. Ognivenko. Radiation effects in the charged
particles beams moving in periodic fields // Problems of
Atomic Science and Technology. Series “Nuclear
Physics Investigations”. 2010, № 3, p. 103-106
12. V.V.Ognivenko. Momentum spread in a relativistic
electron beam in an undulator // J. Exp. Theor. Phys.
2012, v. 115, № 5, p. 938-946; Zh. Eksp. Teor. Fiziki,
2012, v. 142, № 5, p. 1067-1076.
13. L.D. Landau, E.M. Lifshic. Theorya polya. M: “Nauka”,
1967, p. 460 (in Russian).
14. J.M. Dawson. Particle simulation of plasmas // Rev.
Mod. Phys. 1983, v. 55, p. 403-447.
15. B.A. Trubnikov. Stolknoveniya chastits v polnost’yu
ionizovannoi plazme // Voprosy teorii plazmy. M.:
“Gosatomizdat”. 1963, № 1, p. 98-182 (in Russian).
Article received 20.10.2016
СИЛЫ ПАРНОГО ВЗАИМОДЕЙСТВИЯ И КОЭФФИЦИЕНТЫ ТРЕНИЯ И ДИФФУЗИИ ЧАСТИЦ
В ПРОСТРАНСТВЕ ИМПУЛЬСОВ
В.В. Огнивенко
Рассмотрены процессы диффузии частиц в пространстве импульсов для системы, состоящей из большого
числа частиц. Коэффициент трения и тензор диффузии получены исходя непосредственно из динамики
движения отдельных частиц под действием сил парного взаимодействия со стороны каждой из них.
Получено выражение для силы трения в случае предброуновского движения кулоновски
взаимодействующих заряженных частиц.
СИЛИ ПАРНОЇ ВЗАЄМОДІЇ І КОЕФІЦІЄНТИ ТЕРТЯ І ДИФУЗІЇ ЧАСТИНОК У ПРОСТОРІ
ІМПУЛЬСІВ
В.В. Огнівенко
Розглянуто процеси дифузії частинок у просторі імпульсів для системи, що складається з великої
кількості частинок. Коефіцієнт тертя й тензор дифузії отримані виходячи безпосередньо з динаміки руху
окремих частинок під дією сил парної взаємодії з боку кожної з них. Отримано вираз для сили тертя у
випадку передброунівського руху кулонівськи взаємодіючих заряджених частинок.
|