Analysis of Tridiagonal Recurrence Relations in Continuum Approximation

Transition from difference to differential equation allows solving tridiagonal recurrence relations, which appear, among other things, in analysis of the rotation of an overdamped Brownian particle subjected to a periodic force. Replacement of the discrete integers in the Fourier series by continuum...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2001
Автори: Bass, F.G., Gitterman, M.
Формат: Стаття
Мова:English
Опубліковано: Радіоастрономічний інститут НАН України 2001
Назва видання:Радиофизика и радиоастрономия
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/122226
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Analysis of Tridiagonal Recurrence Relations in Continuum Approximation / F.G. Bass, M. Gitterman // Радиофизика и радиоастрономия. — 2001. — Т. 6, № 1. — С. 71-78. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-122226
record_format dspace
spelling irk-123456789-1222262017-07-01T03:03:21Z Analysis of Tridiagonal Recurrence Relations in Continuum Approximation Bass, F.G. Gitterman, M. Transition from difference to differential equation allows solving tridiagonal recurrence relations, which appear, among other things, in analysis of the rotation of an overdamped Brownian particle subjected to a periodic force. Replacement of the discrete integers in the Fourier series by continuum is justified for large numbers, i. e. for small angles. For the simplest case of the sinusoidal force, our solution, indeed, coincides with one obtained by expanding the sin in the original Fokker-Planck equation (The Ornstein-Uhlenbeck limit). However, for slightly more complicate potential the expansion for small angles does not transform the appropriate Fokker-Planck equation into the soluble. At the same time, the method suggested allows solving the problem for all periodic potentials which have finite number of terms in their Fourier series such as sinm(θ ) or cosm (θ). Even and odd functions require slightly different analysis, and are considered separately. Переход от разностного к дифференциальному уравнению позволяет решить тридиагональные рекуррентные соотношения, которые возникают, в частности, при анализе вращения броуновской частицы с трением при наличии периодической силы. Замена дискретных индексов в разложениях Фурье непрерывными оправдан для больших номеров, т. е. для малых углов. В простейшем случае синусоидальной силы наше решение действительно совпадает с решением, полученным путем разложения синуса в первоначальном уравнении Фоккера-Планка (предел Орнштейна-Уленбека). Однако уже в случае несколько более сложного потенциала разложение при малых углах не делает соответствующее уравнение Фоккера-Планка разрешимым. В то же время предлагаемый метод позволяет решить задачу для всех периодических потенциалов, для которых ряды Фурье содержат конечное число слагаемых типа sinm(θ ) или cosm (θ). Четные либо нечетные функции требуют несколько различного подхода и рассматриваются отдельно. Перехід від різницевого до диференціального рівняння дозволяє вирішити тридіагональні рекурентні співвідношення, які виникають, зокрема, при аналізі обертання броунівської частинки з тертям у присутності періодичної сили. Заміна дискретних індексів у розкладанні Фур’є неперервними виправдана для великих номерів, тобто для малих кутів. У найпростішому випадку синусоїдальної сили наше рішення співпадає із рішенням, отриманим шляхом розкладання синуса у початковому рівнянні Фоккера-Планка (границя Орнштейна-Уленбека). Однак уже у випадку дещо складнішого потенціалу розкладання при малих кутах не робить відповідне рівняння Фоккера-Планка вирішуваним. Водночас запропонований метод дозволяє вирішити задачу для всіх періодичних потенціалів, для яких ряди Фур’є містять кінцеву кількість доданків, типу sinm(θ ) або cosm (θ). Парні чи непарні функції вимагають дещо іншого підходу і розглядаються окремо. 2001 Article Analysis of Tridiagonal Recurrence Relations in Continuum Approximation / F.G. Bass, M. Gitterman // Радиофизика и радиоастрономия. — 2001. — Т. 6, № 1. — С. 71-78. — Бібліогр.: 11 назв. — англ. 1027-9636 http://dspace.nbuv.gov.ua/handle/123456789/122226 en Радиофизика и радиоастрономия Радіоастрономічний інститут НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Transition from difference to differential equation allows solving tridiagonal recurrence relations, which appear, among other things, in analysis of the rotation of an overdamped Brownian particle subjected to a periodic force. Replacement of the discrete integers in the Fourier series by continuum is justified for large numbers, i. e. for small angles. For the simplest case of the sinusoidal force, our solution, indeed, coincides with one obtained by expanding the sin in the original Fokker-Planck equation (The Ornstein-Uhlenbeck limit). However, for slightly more complicate potential the expansion for small angles does not transform the appropriate Fokker-Planck equation into the soluble. At the same time, the method suggested allows solving the problem for all periodic potentials which have finite number of terms in their Fourier series such as sinm(θ ) or cosm (θ). Even and odd functions require slightly different analysis, and are considered separately.
format Article
author Bass, F.G.
Gitterman, M.
spellingShingle Bass, F.G.
Gitterman, M.
Analysis of Tridiagonal Recurrence Relations in Continuum Approximation
Радиофизика и радиоастрономия
author_facet Bass, F.G.
Gitterman, M.
author_sort Bass, F.G.
title Analysis of Tridiagonal Recurrence Relations in Continuum Approximation
title_short Analysis of Tridiagonal Recurrence Relations in Continuum Approximation
title_full Analysis of Tridiagonal Recurrence Relations in Continuum Approximation
title_fullStr Analysis of Tridiagonal Recurrence Relations in Continuum Approximation
title_full_unstemmed Analysis of Tridiagonal Recurrence Relations in Continuum Approximation
title_sort analysis of tridiagonal recurrence relations in continuum approximation
publisher Радіоастрономічний інститут НАН України
publishDate 2001
url http://dspace.nbuv.gov.ua/handle/123456789/122226
citation_txt Analysis of Tridiagonal Recurrence Relations in Continuum Approximation / F.G. Bass, M. Gitterman // Радиофизика и радиоастрономия. — 2001. — Т. 6, № 1. — С. 71-78. — Бібліогр.: 11 назв. — англ.
series Радиофизика и радиоастрономия
work_keys_str_mv AT bassfg analysisoftridiagonalrecurrencerelationsincontinuumapproximation
AT gittermanm analysisoftridiagonalrecurrencerelationsincontinuumapproximation
first_indexed 2025-07-08T21:21:29Z
last_indexed 2025-07-08T21:21:29Z
_version_ 1837115312976166912
fulltext Ðàäèîôèçèêà è ðàäèîàñòðîíîìèÿ, 2001, ò. 6, ¹1, ñòð. ??-?? © F. Bass, M. Gitterman, 2001 Analysis of Tridiagonal Recurrence Relations in Continuum Approximation F. Bass, M. Gitterman Department of Physics, Bar Ilan University, Ramat Gan, 52900 Israel Received on April 11, 2001 Transition from difference to differential equation allows solving tridiagonal recurrence relations, which appear, among other things, in analysis of the rotation of an overdamped Brownian particle subjected to a periodic force. Replacement of the discrete integers in the Fourier series by continuum is justified for large numbers, i. e. for small angles. For the simplest case of the sinusoidal force, our solution, indeed, coincides with one obtained by expanding the sin in the original Fokker-Planck equation (The Ornstein-Uhlenbeck limit). However, for slightly more complicate potential the expansion for small angles does not transform the appropriate Fokker-Planck equation into the soluble. At the same time, the method suggested allows solving the problem for all periodic potentials which have finite number of terms in their Fourier series such as sin ( )m θ or cos ( ).m θ Even and odd functions require slightly different analysis, and are considered separately. The current radio physics is essentially nonlin- ear science. This is caused by using high power generators being concerned with their arrange- ment as well as with the effect of the radiation produced on various objects. Nonlinear processes occur in the natural conditions too. Now, one can speak with assurance about the occurence in Kharkov of the lead of nonlinear radio physics which found the world recognition. The first from the papers in which the complicat- ed nonlinear problem was solved, and which can be called the basic one, was the theory of mag- netron built by S. Ya. Braude. He succeeded in solving the system of nonlinear equations describ- ing the electron motion in magnetron. This work as is known was approved by L. D. Landau. In present paper the new method is proposed for solving the nonlinear problems describing the radio physical phenomena including the behavior of the nonlinear circuit with strong resistivity, the motion of an electron in nonlinear resistive medium, et cetera. The present problem is related to the same field as the pioneer work of S. Ya. Braude. 1. Introduction Many ordinary and partial differential equations used in a practice after suitable expansion reduce to tridiagonal recurrence relation of the form 1 d d n n n n n n n c Q c Q c Q c t − + − += + + (1) Some examples are listed in the Risken mono- graph [1] (master equation with nearest-neighbor coupling, the one � dimensional Shroedinger equa- tion with an unharmonic potential, the Fokker � Plank equation for lasers, and for the Brownian particle moving in a periodic potential). The un- known quantities nc in Eq. (1) might be scalars or column vectors. We restrict our analysis to the case of scalars; the extension to vectors should present no problems. Overdamped Brownian motion in a periodic potential is a typical example leading to Eq. (1). Its equation of motion has the following form: F. Bass, M. Gitterman 2 Ðàäèîôèçèêà è ðàäèîàñòðîíîìèÿ, 2001, ò. 6, ¹1 d ( ) ( ), d g a f t t θ + θ = + (2) where ( )g θ and a are the periodic and con- stant forces acting on a particle, in addition 1 1( ) ( ) 2 ( ).f t f t D t t< >= δ − The Fokker-Planck equation for the distribu- tion function ( , ),P tθ which corresponds to the Langevin equation (2), has the following form: ( ) 2 2 d ( ) . d P P g a P D t ∂ ∂=  θ −  + ∂θ ∂θ (3) If Eq. (3) has coefficients periodic in θ, then its solution is also periodic in θ, and, therefore, may be expanded in the Fourier series ( , ) ( )exp( ). n n n P t c t in =∞ =−∞ θ = θ∑ (4) Substituting the expansion of the periodic func- tion ( )g θ in the Fourier series ( ) exp( ) n k n g d ik =∞ =−∞ θ = θ∑ (5) and (4) into (3), one obtains after simple transfor- mation 2d ( ) . d k n n k n k k c Dn ina c in d c t =∞ − =−∞ = − − − ∑ (6) If the sum in Eq. (6) contains only a finite number of terms or if this sum converges so rapidly that one can restrict our analysis to a finite number of terms, then Eq. (6) takes the form of scalar (or vector) tridiagonal recurrence relations (1) [1]. The equation of motion of an overdamped pendulum subject to a constant and random torque is the simplest example of an equation of the form (2) (with ( ) sing θ = θ ): d sin ( ). d b a f t t θ + θ = + (7) Eq. (7) describes many different phenomena, such as motion of fluxons in superconductors [2], motion of ions in superionic conductors [1] and biological channels [3], charge density waves [4], phase locking in electric circuits [3], mode locking in ring laser gyroscopes [5], and the Josephson junction [6]. The Fokker-Planck equation corresponding to Eq. (7) has the form (3) (with ( ) sing θ = θ ): 2 2 (sin ) , P P a P D t ∂ ∂ ∂= θ − + ∂ ∂θ ∂θ (8) or the form (6) with the coefficients 1 1 1 2 d d i−= − = and 0kd = for 1k ≠ : 2 1 1 d ( ) ( ). d 2 n n n n c bn Dn ina c c c t + −= − − − − (9) The usual way to solve the tridiagonal recur- rence relations of type (1) is by matrix continued fractions (see [1] and references therein). The aim of this note is to propose another method for solving Eqs. (1), (9), namely, the transition from a difference to a differential equation. Of course, this method is not new, and it has been used successfully, for example, in continuum approx- imation of small oscillations near the equilibrium positions for chains of equidistant particles with nearest-neighbor interactions. However, this method has never been applied to the equations of a kind (9), which would be the aim of our considerations. Replacing the integers n in Eq. (9) by the continuous variable, one can make the Taylor expansion which gives ( ) 3 1 1 3 2 2 . 3 n n n n c c c c O n n + −  ∂ ∂ − ≅ +  ∂ ∂  (10) Analysis of tridiagonal recurrence relations in continuum approximation 3 Ðàäèîôèçèêà è ðàäèîàñòðîíîìèÿ, 2001, ò. 6, ¹1 The error due to retaining only the first term in the series expansion in (10) is of order of 13 3 2 2 1 2 , 3 3 n nc c nn n −∂ ∂  ≈ ∂∂   which strongly decreas- es with n. Substituting (10) into (9), one gets 2[ ] .n n n c c bn Dn ina c t n ∂ ∂ + = − − ∂ ∂ (11) Let us now turn to the general Eq. (6), assuming that summation in this equation is restricted to some max .k < ∞ Then, for max,n k> one can expand n kc − in Eq. (6), 22 2 ..., 2 n n n k n c ck c c k n n − ∂ ∂ ≈ − + + ∂ ∂ which reduces Eq. (6) to the following form max max 2 k n k n k k c Dn ina in d c t =−  ∂ = − − − −  ∂    ∑ max max max max 2 2 2 ( ) ( ) . 2 k k n n k k k k k k c cin in kd k d n n=− =− ∂ ∂ + ∂ ∂∑ ∑ (12) Three combination of the Fourier coeffi- cients kd defined by (5), enter Eq. (12), max max 0 , k k k k K d =− = ∑ max max 1 , k k k k K kd =− = ∑ and max max 2 2 . k k k k K k d =− = ∑ The calculations are slightly different for the odd and even function ( ).g θ For odd functions ( ),g θ k kd d− = − so that 0 0K = and max 1 0 2 , k k k K kd = = ∑ whereas for even functions ( ),g θ max 0 0 2 k k k K d = = ∑ and 1 0.K = Therefore, for odd ( ),g θ one can neglect the last term in Eq. (12), and rewrite it as 2 1 .n n n c c Dn ina c inK t n ∂ ∂ = − − − ∂ ∂ (13) Whereas for the even function ( )g θ 2 2 0 2 2 . 2 n n n c cin Dn ina inK c K t n ∂ ∂ = − − − + ∂ ∂ (14) Analogous to Eq. (10), one concludes that the relative error due to neglecting the next term in the expansion in Eq. (14) is of the order 4 2 1 4 2 2 1 1 1 ( ) . 24 2 12 n nc c n n n −∂ ∂ ≈ ∂ ∂ We consider in Sections 2 and 3 the simple cases of purely deterministic and steady-state overdamped pendulum, and compare our result with the exact solutions, leaving to Section 4 the analysis of (11). The general analysis of even and odd functions ( )f θ described by Eqs. (13) and (14) is performed in Sections 5 and 6. Final- ly, some discussion and conclusions complete the analysis. 2. Non-biased pendulum Let us start with the simplest case, without deterministic (a) or random ( ( ))f t forces in Eq. (7). Then, Eq. (7) takes the simple form, d sin 0, d b t θ + θ = which allows the exact solution 0tan tan exp( ), 2 2 bt θθ = − (15) where 0( 0) .tθ = = θ Eq. (8) with 0a D= = transforms after in- serting sinG P= θ to a first order partial differ- ential equation with constant coefficients and characteristic equations of the form F. Bass, M. Gitterman 4 Ðàäèîôèçèêà è ðàäèîàñòðîíîìèÿ, 2001, ò. 6, ¹1 d d d . 1 sin 0 t G b θ = = θ (16) The latter equations show that t and θ enter the solution only in the combination log tan , 2 bt θ +    so that the solution of Eq. (8) with a = D = 0 has the following form: log tan 2 , sin f bt P  θ +     = θ (17) where ( )f z is an arbitrary function which is found from the initial conditions. If 0( , 0) ( ),P tθ = = δ θ − θ then Eq. (17) gives 0 log tan 2 ( ) , sin f  θ      δ θ − θ = θ (18) which means that 1 1 0( ) sin 2tan (exp ) 2tan exp . 2 f z z z− − θ  = δ − θ       (19) Substituting now (19) at value log tan 2 z bt θ = =    into (17), one finds the coef- ficients nc in the Fourier series (4), 1sin 2 tan tan exp( ) 2 d exp( ) sinn bt c in − θ      = θ − θ × θ∫ 1 02tan tan exp( ) . 2 bt− θ δ − θ     (20) Using the well-known relation, [ ] 1 0 d ( ) ( ) ( ) d −ψ δ ψ θ −θ = θ = θ δ θ−θ θ  % % with 0( )ψ θ = θ% one can perform integration in Eq. (20) which finally gives 0 1 0 sin ( , ) sin 2 tan tan exp( ) 2 P t bt− θ θ = ×  θ −     2 0 2 0 1 tan exp( ) 2 1 tan exp( 2 ) 2 bt bt  θ + −     × θ + −   1 0exp 2tan tan exp( ) . 2n in bt− θ θ − −     ∑ (21) The sum over n in the exponent of the latter formula defines the delta-function which gives the solution (15) while the pre-sum normalization fac- tor equals to unity both for 0t = and .t = ∞ Hence, using the more complicated calculation, we ob- tained the same solution, which follows immedi- ately from the equation of motion, as it should be since our calculation is exact. Let us now solve the approximate Eq. (11) and, then, compare the result obtained with the exact one found both from the equation of motion and from the Fokker-Planck equation. The first-order partial differential Eq. (11) with constant coefficients has the characteristic equa- tions of the form dd d . 1 0 nct n bn = − = (22) The latter equation is similar to Eq. (16), and its solution can be found analogously to Eqs. (16)- (21), which gives Analysis of tridiagonal recurrence relations in continuum approximation 5 Ðàäèîôèçèêà è ðàäèîàñòðîíîìèÿ, 2001, ò. 6, ¹1 0( , ) exp[ ( exp( ))] n P t in btθ = θ − θ −∑ (23) with the deterministic solution 0 exp( )btθ = θ − which is the limiting case of the exact solution (15) for small θ. 3. Steady-state case In the steady-state limit, 0,nc t ∂ = ∂ Eq. (9) re- duces to an ordinary equation in finite differences 2 1 1( ) ( ) 0, 2n n n bn Dn ina c c c+ −− − − − = (24) which can be solved rigorously. The continued- fraction method was used for the solution of Eq. (24) by Cresser et al. [7], while Ivanchenko and Zilberman [8] noticed that Eq. (24) bears a resemblance to the recurrence relation for the Bessel functions of the imaginary argument [9], 1 12 ( ) [ ( ) ( )] 0.I z z I z I zν ν+ ν−ν + − = Comparing the latter equation with Eq. (24), one concludes that (up to a normalized factor), .n ia n D b c I D+  ≈    (25) For the following discussion, we need the as- ymptotic form of Eq. (25) for large numbers .n ia D+ The latter can be obtained from the integral representation of this function [9], 0 1 ( ) exp( cos )cos( )dI z z π ν = θ νθ θ − π ∫ 0 sin( ) exp( cosh )d .z t t t ∞νπ − − ν π ∫ (26) For large ν one can neglect the second inte- gral in (26), and the main contribution to the first integral comes from small θ since for large θ the kernel of this integral oscillates rapidly. In line with this, one can extend the range of in- tegration to infinity and expand the argument 2cos( ) 1 2.θ ≈ − θ Then, 2exp( ) ( ) exp cos( )d 2 2 z z I z ∞ ν −∞  θ= − νθ θ = π   ∫ 2exp( ) exp 22 z zz  ν−  π   (27) and, according to Eq. (25) 2 exp . 2n a D n i D c b   +    ≈ −   (28) Let us solve now Eq. (24) by the transition from a difference to a differential equation, which gives ( ) .n n c b Dn ia c t ∂ = − + ∂ (29) As is easy to see, the solution of Eq. (29) coincides with the asymptotic (for large n) form (28) of exact solution. After checking the applicability of our approx- imation by comparing with the known exact solu- tions for the field-free and steady-state cases, we proceed in the next Section to the analysis of the general Eq. (11), for which the exact solution is unknown. 4. Overdamped pendulum The calculations to be described here are sim- ilar to those performed in Section 2. Consider Eq. (11), where a and b might be arbitrary func- tions of t 2( ) ( ) .n n n c c b t n Dn ina t c t n ∂ ∂  + = − − ∂ ∂ (30) F. Bass, M. Gitterman 6 Ðàäèîôèçèêà è ðàäèîàñòðîíîìèÿ, 2001, ò. 6, ¹1 The characteristic equations associated with Eq. (30) have the following form 2 dd d . 1 ( ) ( ) nct n nb t Dn ina t = = − + (31) The first equation in (31) defines the first con- stant of integration 1 0 exp ( )d t C n b   = − τ τ     ∫ (32) while from the second equation, one gets 2 0 exp ( )d t nc C n b    = − τ τ ×        ∫ 2 1 0 0 exp d exp 2 ( ) t z DC z b    − τ −      ∫ ∫ 1 0 0 d ( )exp ( )d . t z iC za z b   τ τ     ∫ ∫ (33) Taking Eq. (33) into account, according to the theory of partial differential equations, the second constant of integration 0 0 exp exp ( )d t nc in b    = − − τ τ θ ×       ∫ 2 0 0 0 exp exp 2 ( )d d exp 2 ( )d t t z Dn b z b       − − τ τ τ τ −              ∫ ∫ ∫ 0 0 0 exp ( )d ( )exp ( )d . t t z in b za z b        − τ τ τ τ               ∫ ∫ ∫ (34) For the special case of time-independent a and b, Eq. (34) reduces to [ ]0exp exp( )nc in bt= − θ − × [ ] [ ] 2 exp 1 exp( 2 ) 1 exp( ) . 2 Dn ina bt bt b b  − + − − − −    (35) It is a matter of direct verification to confirm that Eqs. (34) and (35) are solutions of Eq. (30) with ( ),a a t= ( )b b t= and const,a = const,b = respectively. Substituting Eq. (35) into Eq. (4), one obtains the full solution of the Fokker �Planck equation (8) corresponding to the Langevin equation (7), while Eq. (34) relates to the Langevin equation (7) with the time-dependent coefficient. Recall that all these solutions have been obtained on the assumption that one can replace the difference in n tridiagonal recurrence relations by differential equations. Now we are in a position to understand the final results of this assumption. It turns out that our final result (35) coincides with the solution of the Ornstein- Uhlenbeck process (sin( )θ → θ in the original equation) which can be found in the book by Gar- diner [10] for a = 0. Therefore, our approximation describes the limiting case of small angles, as we have already seen in the field-free case described in Section 2. Provided the distribution function ( , )P tθ is known, one can find all the correlation functions. For our case, which reduces to the Ornstein-Uhlen- beck approximation, the correlation functions are: 1( ) ( )t t< θ θ > and 1cos[ ( )]cos[ ( )] ,t t< θ θ > which have been calculated in [10] and [7], respectively. 5. Odd potential In two previous sections, we considered the specific form of the periodic function ( ) sin ,g θ = θ which is important for many applications. The general case of the odd function ( )g θ is described by Eq. (13) which looks exactly like Eq. (30) upon replacing b by 1ibK and a by 0.a K+ Of course, although these equations look similar, the accura- cy of our approximation strongly depends on the form of ( )g θ since one assumes max.n k> As an example, let us consider the special case of 3( ) sin ( ),g θ = θ which, in contrast to Analysis of tridiagonal recurrence relations in continuum approximation 7 Ðàäèîôèçèêà è ðàäèîàñòðîíîìèÿ, 2001, ò. 6, ¹1 ( ) sin( ),g θ = θ does not reduce to Ornstein- Uhlenbeck equation, and cannot be solved by expansion in θ. Since this function is odd, 0 0.K = Using the well-known relation [9] [ ]3 1 sin ( ) sin(3 ) 3sin 4 θ = − θ + θ (36) one concludes that 3 3 1 8 d d i−= − = − and 1 1 3 , 8 d d i−= − = so that 1 1 .K i = Since 1 1,iK = the final Eqs. (34) and (35) obtained in the previous Section for ( ) sin( )g θ = θ and n > 1 also apply for 3( ) sin ( )g θ = θ for n > 3. 6. Even potential The case of an even potential is described by Eq. (14), which can be rewritten, after the sepa- ration of variables ( , ) exp( ) ( )n nc n t t q n= −λ as 2 02 2 2 d ( ) 0. d n i q i a nK Dn q K nn λ + + + + =   (37) The solution of Eq. (37) for the steady-state case, 0,λ = presents no problem since Eq. (37) reduces to the differential equation for the Airy function [11]. In the general case 0,λ ≠ one has to per- form substitution d ( ) ln[ ( )] d r n q n n = which trans- forms Eq. (37) into the Ricatti equation for ( )r n of the form 2 2 0 d ( ) , d 2 Kr r i a nK Dn n i n λ + = + + +   (38) after which one obtains the required solution of Eq. (37), ( )d ( ) exp ( )d . d q r n r n n n − = −∫ (39) In general, the solutions of Eqs. (38) and (39) cannot be obtained by quadratures, and one has to use the approximate or numeral methods. For 2( ) cos ,g θ = θ 2 2 02 1 4,d d d= − = = so that in this case, 0 1 2K = and 2 2.K = To find the approximate solution of Fokker-Planck equa- tion (3) for arbitrary even periodic function ( )g θ with a finite numbers of terms kd in its Fourier series (5) (till some maxk ), one has to find these ,kd and calculate two numbers max max 0 , k k k k K d =− = ∑ and max max 2 2 k k k k K k d =− = ∑ in Eq. (37). The latter equa- tion is justified for max.n k> 7. Conclusions We have used the transition from difference to differential equations as an approximate method of solving tridiagonal recurrence equations. This well- known method of replacing a discrete integer vari- able n by a continuous variable has a relative error of order of 2,n− i. e. this approximation is justified for large n, and the error is decreased with n. According to expansion (4) in the Fourier series, only small θ make an essential contribution to this series for large n, compared with rapidly oscillating large terms. It is no wonder, therefore, that for the overdamped pendulum without periodic and ran- dom forces (Section 2), and in the presence of these forces in the steady-state (Section 3) and in the general time-dependent case (Section 4), our method coincides with the exact solution in the limit of small θ. The periodic force acting on the pendu- lum has a simple form ( ) sin ,g bθ = θ and after replacing sinθ by θ in the Fokker-Planck equation, the latter takes the Ornstein-Uhlenbeck form which allows an exact solution. However, for a slightly different form of a periodic force, say 2 1( ) sin ( ),mg −θ = θ the expansion for small θ has the form 2 1 2 1sin ( ) ,m m− −θ ≈ θ and the appropriate Fokker-Planck equation cannot be solved. Howev- er, our method can be applied for arbitrary function ( ),g θ leading to the first-order partial differential Eq.(13) for odd functions ( )g θ and to the second- order partial differential Eq. (14) for even functions ( ).g θ The coefficients in these equations contain F. Bass, M. Gitterman 8 Ðàäèîôèçèêà è ðàäèîàñòðîíîìèÿ, 2001, ò. 6, ¹1 a few simple combinations of the coefficients in the Fourier expansions of ( )g θ under the assump- tion that these expansions contain a finite number maxk of terms, and the equations can easily be solved, as we illustrated by a few simple examples in Sections 5 and 6. Strictly speaking, our proce- dure is applicable for max,n k> and it has a relative error of order 2.n− There are different ways to improve the accuracy of our method. One way is to restrict this procedure to the values of n that are too small, min,n n≥ where the accuracy is high 2 min( ),n−≈ and the coefficients 1... nc c with minn n< will be found from the appropriate tridiagonal re- currence relations with the previously found min .nc References 1. H. Risken. The Fokker-Planck Equation; Methods of Solution and Applications, Second Edition. Berlin, Springer-Verlag. 1996, Chapter 9-11. 2. B. Shapiro, I. Dayan, M. Gitterman, and G. H. Weiss. Phys. Rev. 1992, B 46, p. 8416. 3. A. J. Viterbi. Principles of Coherent Communications. New York, McGraw-Hill, 1966. 4. G. Gruner, A. Zavadowski, and P. M. Chaikin. Phys. Rev. Letters. 1981, 46, p. 511. 5. W. Shleich, C. S. Cha, and J. D. Cresser. Phys. Rev. 1984, A 29, pp. 230. 6. A. Barone and G.Paterno. Physics and Applications of Josephson Effect. New York, Willey, 1982. 7. J. D. Cresser, D. Hammonds, W. H. Louisell, P. Meystre, and H. Risken. Phys. Rev. A. 1982, 25, p. 2226. 8. Yu. M. Ivanchenko and L. A. Zilberman. Zh. Eksp. Teor. Fiz. 1968, 55, pp. 2395; Sov. Phys.-JETP. 1969, 28, pp. 1272. 9. I. S. Gradstein and I. M. Ryzhik. Table of Integrals, Series and Products. Boston, Academic Press, 1994. 10. C. W. Gardiner. Handbook of Stochastic Methods. Berlin, Springer-Verlag, 1997. 11. M. Abramowitz, I. A. Stegun. Handbook of Mathematical Functions. New York, Dover, 1972. Àíàëèç òðèäèàãîíàëüíûõ ðåêóððåíòíûõ ñîîòíîøåíèé â êîíòèíóàëüíîì ïðèáëèæåíèè Ô. Áàññ, Ì. Ãèòòåðìàí Ïåðåõîä îò ðàçíîñòíîãî ê äèôôåðåíöè- àëüíîìó óðàâíåíèþ ïîçâîëÿåò ðåøèòü òðè- äèàãîíàëüíûå ðåêóððåíòíûå ñîîòíîøåíèÿ, êîòîðûå âîçíèêàþò, â ÷àñòíîñòè, ïðè àíàëè- çå âðàùåíèÿ áðîóíîâñêîé ÷àñòèöû ñ òðåíè- åì ïðè íàëè÷èè ïåðèîäè÷åñêîé ñèëû. Çàìå- íà äèñêðåòíûõ èíäåêñîâ â ðàçëîæåíèÿõ Ôó- ðüå íåïðåðûâíûìè îïðàâäàí äëÿ áîëüøèõ íîìåðîâ, ò. å. äëÿ ìàëûõ óãëîâ.  ïðîñòåé- øåì ñëó÷àå ñèíóñîèäàëüíîé ñèëû íàøå ðå- øåíèå äåéñòâèòåëüíî ñîâïàäàåò ñ ðåøåíè- åì, ïîëó÷åííûì ïóòåì ðàçëîæåíèÿ ñèíóñà â ïåðâîíà÷àëüíîì óðàâíåíèè Ôîêêåðà-Ïëàíêà (ïðåäåë Îðíøòåéíà-Óëåíáåêà). Îäíàêî óæå â ñëó÷àå íåñêîëüêî áîëåå ñëîæíîãî ïîòåí- öèàëà ðàçëîæåíèå ïðè ìàëûõ óãëàõ íå äåëà- åò ñîîòâåòñòâóþùåå óðàâíåíèå Ôîêêåðà- Ïëàíêà ðàçðåøèìûì.  òî æå âðåìÿ ïðåäëà- ãàåìûé ìåòîä ïîçâîëÿåò ðåøèòü çàäà÷ó äëÿ âñåõ ïåðèîäè÷åñêèõ ïîòåíöèàëîâ, äëÿ êîòîðûõ ðÿäû Ôóðüå ñîäåðæàò êîíå÷íîå ÷èñëî ñëàãà- åìûõ òèïà sin ( )m θ èëè cos ( ).m θ ×åòíûå ëèáî íå÷åòíûå ôóíêöèè òðåáóþò íåñêîëüêî ðàçëè÷- íîãî ïîäõîäà è ðàññìàòðèâàþòñÿ îòäåëüíî. Àíàë³ç òðèä³àãîíàëüíèõ ðåêóðåíòíèõ ñï³ââ³äíîøåíü ó êîíòèíóàëüíîìó íàáëèæåíí³ Ô. Áàññ, Ì. óòòåðìàí Ïåðåõ³ä â³ä ð³çíèöåâîãî äî äèôåðåíö³àëüíî- ãî ð³âíÿííÿ äîçâîëÿº âèð³øèòè òðèä³àãîíàëüí³ ðåêóðåíòí³ ñï³ââ³äíîøåííÿ, ÿê³ âèíèêàþòü, çîê- ðåìà, ïðè àíàë³ç³ îáåðòàííÿ áðîóí³âñüêî¿ ÷àñ- òèíêè ç òåðòÿì ó ïðèñóòíîñò³ ïåð³îäè÷íî¿ ñèëè. Çàì³íà äèñêðåòíèõ ³íäåêñ³â ó ðîçêëàäàíí³ Ôóð�º íåïåðåðâíèìè âèïðàâäàíà äëÿ âåëèêèõ íîìåð³â, òîáòî äëÿ ìàëèõ êóò³â. Ó íàéïðîñò³øîìó âè- ïàäêó ñèíóñî¿äàëüíî¿ ñèëè íàøå ð³øåííÿ ñï³âïà- äຠ³ç ð³øåííÿì, îòðèìàíèì øëÿõîì ðîçêëàäàí- íÿ ñèíóñà ó ïî÷àòêîâîìó ð³âíÿíí³ Ôîêêåðà- Ïëàíêà (ãðàíèöÿ Îðíøòåéíà-Óëåíáåêà). Îäíàê óæå ó âèïàäêó äåùî ñêëàäí³øîãî ïîòåíö³àëó ðîçêëàäàííÿ ïðè ìàëèõ êóòàõ íå ðîáèòü â³äïî- â³äíå ð³âíÿííÿ Ôîêêåðà-Ïëàíêà âèð³øóâàíèì. Âîäíî÷àñ çàïðîïîíîâàíèé ìåòîä äîçâîëÿº âèð- ³øèòè çàäà÷ó äëÿ âñ³õ ïåð³îäè÷íèõ ïîòåíö³àë³â, äëÿ ÿêèõ ðÿäè Ôóð�º ì³ñòÿòü ê³íöåâó ê³ëüê³ñòü äîäàíê³â, òèïó sin ( )m θ àáî cos ( ).m θ Ïàðí³ ÷è íåïàðí³ ôóíêö³¿ âèìàãàþòü äåùî ³íøîãî ï³äõîäó ³ ðîçãëÿäàþòüñÿ îêðåìî.