Using Alternative Aperture Geometry Horn Antennas in Wide-Band Multifrequency Measurements
Application of horn antennas in non-destructive testing by multifrequency reflectivity measurements has several advantages in comparison with simple antennas such as open-ended waveguide, in particular, higher gain and narrower directional characteristic. However, having two reference discontinuitie...
Saved in:
Date: | 2002 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Радіоастрономічний інститут НАН України
2002
|
Series: | Радиофизика и радиоастрономия |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/122342 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Using Alternative Aperture Geometry Horn Antennas in Wide-Band Multifrequency Measurements / O.O. Drobakhin, Y.V. Kondratyev // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 4. — С. 385-388. — Бібліогр.: 3 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-122342 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1223422017-07-03T03:02:57Z Using Alternative Aperture Geometry Horn Antennas in Wide-Band Multifrequency Measurements Drobakhin, O.O. Kondratyev, Y.V. Application of horn antennas in non-destructive testing by multifrequency reflectivity measurements has several advantages in comparison with simple antennas such as open-ended waveguide, in particular, higher gain and narrower directional characteristic. However, having two reference discontinuities hinders from using them for the purpose because of superposition of echoing characteristics being retrieved. General solution lies in extracting single echoing characteristic whether by mathematical post-processing measurement results or by strong reducing one of reference discontinuity reflectivity levels by altering discontinuity's geometry, that is the subject of this paper. Применение рупорных антенн для неразрушающего контроля посредством измерения многочастотных характеристик отражения имеет ряд преимуществ по сравнению с простыми антеннами (такими как открытый конец волновода), а именно: более высокий коэффициент усиления и более узкие характеристики направленности. Однако, наличие двух стандартных неоднородностей приводит к многократным переотражениям и препятствует использованию этих антенн. Основное решение состоит в выделении отдельных характеристик отражения либо путем математической обработки результатов измерений, либо за счет значительного снижения уровня отражений от одной из стандартных неоднородностей изменяя геометрию этой неоднородности, что и является предметом исследования в настоящей статье. Застосування рупорних антен для неруйнівного контролю за допомогою вимірювання багаточастотних характеристик відбиття має низку переваг у порівнянні з простими антенами (такими як відкритий кінець хвилеводу), зокрема: вищий коефіцієнт підсилення та вужчі характеристики спрямованості. Однак, наявність двох стандартних неоднорідностей приводить до багаторазового перевідбиття і перешкоджає застосуванню цих антен. Основне рішення полягає у виділенні окремих характеристик відбиття або за допомогою математичної обробки результатів вимірювань, або за рахунок значного зниження рівня відбиття від однієї зі стандартних неоднорідностей змінюючи геометрію цієї неоднорідності, що і є предметом дослідження у даній статті. 2002 Article Using Alternative Aperture Geometry Horn Antennas in Wide-Band Multifrequency Measurements / O.O. Drobakhin, Y.V. Kondratyev // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 4. — С. 385-388. — Бібліогр.: 3 назв. — англ. 1027-9636 http://dspace.nbuv.gov.ua/handle/123456789/122342 en Радиофизика и радиоастрономия Радіоастрономічний інститут НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Application of horn antennas in non-destructive testing by multifrequency reflectivity measurements has several advantages in comparison with simple antennas such as open-ended waveguide, in particular, higher gain and narrower directional characteristic. However, having two reference discontinuities hinders from using them for the purpose because of superposition of echoing characteristics being retrieved. General solution lies in extracting single echoing characteristic whether by mathematical post-processing measurement results or by strong reducing one of reference discontinuity reflectivity levels by altering discontinuity's geometry, that is the subject of this paper. |
format |
Article |
author |
Drobakhin, O.O. Kondratyev, Y.V. |
spellingShingle |
Drobakhin, O.O. Kondratyev, Y.V. Using Alternative Aperture Geometry Horn Antennas in Wide-Band Multifrequency Measurements Радиофизика и радиоастрономия |
author_facet |
Drobakhin, O.O. Kondratyev, Y.V. |
author_sort |
Drobakhin, O.O. |
title |
Using Alternative Aperture Geometry Horn Antennas in Wide-Band Multifrequency Measurements |
title_short |
Using Alternative Aperture Geometry Horn Antennas in Wide-Band Multifrequency Measurements |
title_full |
Using Alternative Aperture Geometry Horn Antennas in Wide-Band Multifrequency Measurements |
title_fullStr |
Using Alternative Aperture Geometry Horn Antennas in Wide-Band Multifrequency Measurements |
title_full_unstemmed |
Using Alternative Aperture Geometry Horn Antennas in Wide-Band Multifrequency Measurements |
title_sort |
using alternative aperture geometry horn antennas in wide-band multifrequency measurements |
publisher |
Радіоастрономічний інститут НАН України |
publishDate |
2002 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/122342 |
citation_txt |
Using Alternative Aperture Geometry Horn Antennas in Wide-Band Multifrequency Measurements / O.O. Drobakhin, Y.V. Kondratyev // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 4. — С. 385-388. — Бібліогр.: 3 назв. — англ. |
series |
Радиофизика и радиоастрономия |
work_keys_str_mv |
AT drobakhinoo usingalternativeaperturegeometryhornantennasinwidebandmultifrequencymeasurements AT kondratyevyv usingalternativeaperturegeometryhornantennasinwidebandmultifrequencymeasurements |
first_indexed |
2025-07-08T21:32:42Z |
last_indexed |
2025-07-08T21:32:42Z |
_version_ |
1837116021901623296 |
fulltext |
Radio Physics and Radio Astronomy, 2002, v. 7, No. 4, pp. 385-388
USING ALTERNATIVE APERTURE GEOMETRY HORN
ANTENNAS IN WIDE-BAND MULTIFREQUENCY
MEASUREMENTS
O.O. Drobakhin*, Y.V. Kondratyev**
Dnepropetrovsk National University
Nauchnaya str., 13, Dniepropetrovsk, Ukraine
E-mail: *) odr@ua.fm, **) ce@ua.fm
Application of horn antennas in non-destructive testing by multifrequency reflectivity measurements has
several advantages in comparison with simple antennas such as open-ended waveguide, in particular, higher gain
and narrower directional characteristic. However, having two reference discontinuities hinders from using them
for the purpose because of superposition of echoing characteristics being retrieved. General solution lies in ex-
tracting single echoing characteristic whether by mathematical post-processing measurement results or by strong
reducing one of reference discontinuity reflectivity levels by altering discontinuity's geometry, that is the subject
of this paper.
1. Introduction
Wide-band multifrequency measurements of reflec-
tivity in free space allow testing the internal structure
of complex multi-layered materials containing dis-
continuities of different kinds (both inter-layer bor-
ders and defects of different kinds). Due to applying
the method of synthesising radio-pulse envelope [1]
spatial distribution of insertion reflectivity may be
obtained, which then is used to locate the defects
and/or derive dependency of dielectric constant and
other parameters of structure under test on the dis-
tance along the measurement axis.
Existing real-time measurement systems [2] use
waveguide reflectometric circuit for acquiring reflec-
tivity data. Reflectivity is obtained as ratio of re-
flected to incident wave power, correspondingly re-
ceived and radiated by a probe. The most frequently
used probes are open-ended waveguide (OEW) and
different types of horn antennas.
Every probe represents one or more discontinui-
ties serving as references, thus spatial echoing char-
acteristic appears a superposition of similar reflectiv-
ity characteristics, corresponding to cross-correlation
of reflection signals of structure under test with that
of each reference discontinuity. Superposing hinders
clear interpreting reflectivity signals and estimating
structure's parameters, so only characteristics derived
with OEW may be used directly for this purpose.
Horns, though of higher gain and narrower direc-
tional diagram than OEW, have two discontinuities
(throat and aperture), so the superposition may be
avoided whether by mathematical filtering raw echo-
ing data, or/and by strong reducing the minor discon-
tinuity (i. e. having lower reflectivity, typically, aper-
ture) by special designing its geometry.
2. Alternative Aperture Design
Modified horn may be derived from usual horn by
framing its aperture in cylindrical metal surface, as it
is shown in Fig. 1. Outer diameter (D ) of the cylin-
der lies in range 0.5-1 wavelength at minimum fre-
a
b D
D
Fig. 1. Alternative design of horn antenna
O.O. Drobakhin, Y.V. Kondratyev
386 Radio Physics and Radio Astronomy, 2002, v. 7, No. 4
quency [3]. We have tested such a design with three
pyramidal-shaped horns having square aperture (one
for 8-12.5 GHz band with aperture of size
93a b= = mm, and two for 17-26 GHz band with
same parameters of 42 and 82 mm respectively).
3. Using Modified Horns
Studying alternative geometry horns as probes
showed that some of their properties, essential for
wide-band testing, differ from that of their conven-
tional analogues.
First, insertion reflectivity of any discontinuity
obtained with an alternative geometry horn decreases
non-monotonously with the distance along the prob-
ing axis (further – distance). In particular, the de-
pendence suffers oscillations with period of 1/2 aver-
age wavelength (Fig. 2), taking place as (mainly) in
the near-field, so (insignificantly) in the far-field re-
gion. Maximum amplitude of oscillations depends on
own value of discontinuity's reflectivity, so their na-
ture may be supposed to be an interaction of reflect-
ing surface with aperture of the horn, which influ-
ences the EM field distribution in the system probe-
structure under the test. Thus the system should be
considered (especially for near-field measurements)
as the whole. For example, when finding out dielec-
tric constant for single layer structure by calculating
the ratio of insertion reflectivity of the structure and
that of metal surface, correct result may be obtained
only if oscillations' “spatial phases” for both surfaces'
reflectivities are equal.
It must be said that for usual horns and even
open-ended waveguide probes the dependency ( )r z
has similar oscillations at very low amplitude. They
can hardly be detected on the noise background and
are anyway incomparable with common levels of
informative signals.
Second, inter-influence of the probe and struc-
ture under the test leads to strong non-linear depend-
ency of ratio of insertion reflectivities, corresponding
to cross-correlation with signals of aperture and
throat of the horn (for conventional horns it is linear
at least in whole far-field and usually in the most part
of the near field region, see Fig. 3). At farther dis-
tances the ratio stabilises at considerably low level
(typically 0.12-0.14). Thus modifying a horn reduces
aperture-referenced reflectivity by 2-3 times. Phase
difference and distance between mentioned insertion
reflectivity peaks are also constant, so estimating
parameters of multi-layered structures having electric
lengths equal to or greater than that of the horn used
0
0.01
0.02
0.03
0.04
0.05
300 400 500 600 700 800
z, mm
|r
(z
)|
a
b
Fig. 2. Spatial oscillations of reflectivity character-
istics of metal plate moving along probe axis, derive
with horn’s throat (a) and aperture (b)
0
0.2
0.4
0.6
0.8
1
1.2
200 300 400 500 600 700
z, mm
a
b
Fig. 3. Aperture-to-throat reflectivity module ratio
for usual horn (a) and the same horn with altered
aperture geometry (b)
0
20
40
60
80
100
120
0 200 400 600 800 1000
z, mm
L
(z
),
m
m
Fig. 4. Locality of testing 0z = at the aperture
Using Alternative Aperture Geometry Horn Antennas in Wide-Band Multifrequency Measurements
Radio Physics and Radio Astronomy, 2002, v. 7, No. 4 387
as probe becomes possible, especially in combination
with special mathematical filter deleting aperture
constituent of structure's reflectivity characteristic
(high quality of filtering is possible only at low and
constant aperture-throat reflectivity ratios).
Finally, some words may be said about locality
of testing. Locality is the characteristic that shows
minimal distance (across the probe axis) between two
discontinuities, which allows their clear discrimina-
tion. Up to the present this question could not be
completely solved due to enormous amount of meas-
urements in the scanning mode, needed to learn how
reflectivity dependency, measured along the cross
axis, and thus the locality, changes along the probe
axis. Now it is observed that locality is a linear direct
ratio dependency from the distance along probe axis
tending to a zero at aperture, though near the aperture
it takes a super-linear character, taking at aperture the
value of half its size (see Fig. 4). Linear behaviour
may be explained by existence of concrete directional
diagram, which at considerably large distances does
not depend on structure under test, so there is certain
sector, within which the reflectivity changes between
its maximum and half the maximum values. Angle
2ϕ , determining size of the sector, binds the locality
(L ) with distance (d ) to the discontinuity:
sinL d ϕ= . For example, the horn used for study-
ing the locality has sector width 2 14.8ϕ = ° , so
0.129L d= , or 0.134L z= , where z is the dis-
tance along probe axis.
Next, the non-linear locality dependency near
the aperture is due to non-zero size of the aperture, so
the locality value anyway cannot be lower than half
the size of the aperture.
As for resolution, or minimal size of discontinu-
ity, which can be discovered by measurements within
certain frequency range, it is, in general, not re-
stricted by anything save sensitivity of measurement
system and other like factors, but strongly depends
on its spatial orientation and electric properties. For
example, testing in 17-26 GHz band allows sure de-
tecting cavities in the dielectric structures having size
of about 0.5 mm (see Fig. 5 for example) along the
probe axis (average wavelength makes about
15 mm). Existing measurement system allows deter-
mining position of a small local discontinuity with
error less than 20 % average wavelength in all direc-
tions (see Fig. 6 for example).
4. Conclusion
Described properties of modified horn antennas al-
low recommending their use in relatively remote part
of far-field region for measuring echoing characteris-
tics of thick multi-layered dielectric structures and
estimating their parameters, such as dielectric con-
stants and widths provided that remaining minor ap-
erture reflection constituent is removed by additional
digital filtering. Using modified antennas for meas-
urements in the near-field and adjacent part of the
far-field region is undesirable because of high non-
linearity of probe-structure system's parameters:
usual horns with or without (for thin structures) addi-
tional filtering or the open-ended waveguide (for the
shortest distances) should be used instead.
a
b
c
Fig. 5. Fragment of raw echoing characteristic of
two-layer organic glass: a – layer 1 front surface
signal, c – layer 2 rear surface signal, b – signal of
thin gap due to loose contact between layers
0
0,25
0,5
0,75
1
-100 -50 0 50 100 150 200
x, mm
Fig. 6. Normalized reflection signal of a defect
(small metal plate) within dielectric layer moving
across the probe axis. 0x = corresponds to edge of
the dielectric crossing the probe axis
O.O. Drobakhin, Y.V. Kondratyev
388 Radio Physics and Radio Astronomy, 2002, v. 7, No. 4
References
1. O.O. Drobakhin. Realisation of the method of synthe-
sising radio pulse envelope using amplitude measure-
ment data derived with a horn antenna. // Russian
Non-destructive Testing Journal. – 1999. – No. 7.– pp.
67-74.
2. O.O. Drobakhin, Y.V. Kondratyev, V.G. Korotkaya.
Computerised measurement installation for non-
destructive testing of dielectric products: hardware and
software // System Technologies. – 2001. –
No. 5(16).– pp. 29-32. (In Russian).
3. D.E. Baker, C.A. van der Neut. Reflection measure-
ments of microwave absorbers. // Microwave Jour-
nal. – 1988. – 31 No. 12.– pp. 95-104.
ИСПОЛЬЗОВАНИЕ РУПОРНЫХ
АНТЕНН С АЛЬТЕРНАТИВНОЙ
ГЕОМЕТРИЕЙ АПЕРТУРЫ ДЛЯ
ШИРОКОПОЛОСНЫХ
МНОГОЧАСТОТНЫХ ИЗМЕРЕНИЙ
О.О. Дробахин, Е.В. Кондратьев
Применение рупорных антенн для неразрушаю-
щего контроля посредством измерения многочастот-
ных характеристик отражения имеет ряд преимуществ
по сравнению с простыми антеннами (такими как от-
крытый конец волновода), а именно: более высокий
коэффициент усиления и более узкие характеристики
направленности. Однако, наличие двух стандартных
неоднородностей приводит к многократным переотра-
жениям и препятствует использованию этих антенн.
Основное решение состоит в выделении отдельных
характеристик отражения либо путем математической
обработки результатов измерений, либо за счет значи-
тельного снижения уровня отражений от одной из
стандартных неоднородностей изменяя геометрию этой
неоднородности, что и является предметом исследова-
ния в настоящей статье.
ЗАСТОСУВАННЯ РУПОРНИХ АНТЕН З
АЛЬТЕРНАТИВНОЮ ГЕОМЕТРІЄЮ
АПЕРТУРИ ДЛЯ ШИРОКОСМУГОВИХ
БАГАТОЧАСТОТНИХ ВИМІРЮВАНЬ
О.О. Дробахін, Є.В. Кондратьєв
Застосування рупорних антен для неруйнівного
контролю за допомогою вимірювання багаточастотних
характеристик відбиття має низку переваг у порівнян-
ні з простими антенами (такими як відкритий кінець
хвилеводу), зокрема: вищий коефіцієнт підсилення та
вужчі характеристики спрямованості. Однак, наявність
двох стандартних неоднорідностей приводить до бага-
торазового перевідбиття і перешкоджає застосуванню
цих антен. Основне рішення полягає у виділенні окре-
мих характеристик відбиття або за допомогою матема-
тичної обробки результатів вимірювань, або за раху-
нок значного зниження рівня відбиття від однієї зі
стандартних неоднорідностей змінюючи геометрію
цієї неоднорідності, що і є предметом дослідження у
даній статті.
|