Transient Electromagnetic Wave Scattering from Dispersive Anisotropic Layered Medium

Transient electromagnetic (EM) wave scattering from a stratified anisotropic medium with temporal and spatial dispersion is considered. The dispersive anisotropic medium is modeled by constitutive relations that involve four second rank tensor susceptibilities, containing time convolution integrals....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2002
Hauptverfasser: Malyuskin, A.V., Shulga, S.N.
Format: Artikel
Sprache:English
Veröffentlicht: Радіоастрономічний інститут НАН України 2002
Schriftenreihe:Радиофизика и радиоастрономия
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/122346
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Transient Electromagnetic Wave Scattering from Dispersive Anisotropic Layered Medium / A.V. Malyuskin, S.N. Shulga // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 4. — С. 401-403. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-122346
record_format dspace
spelling irk-123456789-1223462017-07-03T03:03:00Z Transient Electromagnetic Wave Scattering from Dispersive Anisotropic Layered Medium Malyuskin, A.V. Shulga, S.N. Transient electromagnetic (EM) wave scattering from a stratified anisotropic medium with temporal and spatial dispersion is considered. The dispersive anisotropic medium is modeled by constitutive relations that involve four second rank tensor susceptibilities, containing time convolution integrals. Scalarization approach to the solution of transient EM scattering problems in layered anisotropic medium is outlined. As a practical application the physical model of the effective absorber was proposed and numerically investigated. В работе исследуется нестационарное рассеяние электромагнитных волн в анизотропной слоистой среде с пространственной и временной дисперсией. Анизотропная среда описывается материальными уравнениями типа временной свертки с ядрами восприимчивости, представляющими собой тензоры второго ранга. Предложена и численно исследована модель широкополосного поглощающего покрытия. У роботі досліджується нестаціонарне розсіяння електромагнітних хвиль в анізотропному шаруватому середовищі з просторовою і часовою дисперсією. Анізотропне середовище описується матеріальними рівняннями типу часової згортки з ядрами сприйнятливості, що являють собою тензори другого рангу. Запропонована і чисельно досліджена модель широкосмугового поглинаючого покриття. 2002 Article Transient Electromagnetic Wave Scattering from Dispersive Anisotropic Layered Medium / A.V. Malyuskin, S.N. Shulga // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 4. — С. 401-403. — Бібліогр.: 6 назв. — англ. 1027-9636 http://dspace.nbuv.gov.ua/handle/123456789/122346 en Радиофизика и радиоастрономия Радіоастрономічний інститут НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Transient electromagnetic (EM) wave scattering from a stratified anisotropic medium with temporal and spatial dispersion is considered. The dispersive anisotropic medium is modeled by constitutive relations that involve four second rank tensor susceptibilities, containing time convolution integrals. Scalarization approach to the solution of transient EM scattering problems in layered anisotropic medium is outlined. As a practical application the physical model of the effective absorber was proposed and numerically investigated.
format Article
author Malyuskin, A.V.
Shulga, S.N.
spellingShingle Malyuskin, A.V.
Shulga, S.N.
Transient Electromagnetic Wave Scattering from Dispersive Anisotropic Layered Medium
Радиофизика и радиоастрономия
author_facet Malyuskin, A.V.
Shulga, S.N.
author_sort Malyuskin, A.V.
title Transient Electromagnetic Wave Scattering from Dispersive Anisotropic Layered Medium
title_short Transient Electromagnetic Wave Scattering from Dispersive Anisotropic Layered Medium
title_full Transient Electromagnetic Wave Scattering from Dispersive Anisotropic Layered Medium
title_fullStr Transient Electromagnetic Wave Scattering from Dispersive Anisotropic Layered Medium
title_full_unstemmed Transient Electromagnetic Wave Scattering from Dispersive Anisotropic Layered Medium
title_sort transient electromagnetic wave scattering from dispersive anisotropic layered medium
publisher Радіоастрономічний інститут НАН України
publishDate 2002
url http://dspace.nbuv.gov.ua/handle/123456789/122346
citation_txt Transient Electromagnetic Wave Scattering from Dispersive Anisotropic Layered Medium / A.V. Malyuskin, S.N. Shulga // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 4. — С. 401-403. — Бібліогр.: 6 назв. — англ.
series Радиофизика и радиоастрономия
work_keys_str_mv AT malyuskinav transientelectromagneticwavescatteringfromdispersiveanisotropiclayeredmedium
AT shulgasn transientelectromagneticwavescatteringfromdispersiveanisotropiclayeredmedium
first_indexed 2025-07-08T21:33:05Z
last_indexed 2025-07-08T21:33:05Z
_version_ 1837116046009434112
fulltext Radio Physics and Radio Astronomy, 2002, v. 7, No. 4, pp. 401-403 TRANSIENT ELECTROMAGNETIC WAVE SCATTERING FROM DISPERSIVE ANISOTROPIC LAYERED MEDIUM A.V. Malyuskin, S.N. Shulga Kharkiv National University, Chair of Theorertical Radiophysic 61077, Svobody Sq. 4, Kharkiv,Ukraine E-mail: Sergey.N.Shulga@univer.kharkov.ua , malyuskin@univer.kharkov.ua Transient electromagnetic (EM) wave scattering from a stratified anisotropic medium with temporal and spatial dispersion is considered. The dispersive anisotropic medium is modeled by constitutive relations that in- volve four second rank tensor susceptibilities, containing time convolution integrals. Scalarization approach to the solution of transient EM scattering problems in layered anisotropic medium is outlined. As a practical appli- cation the physical model of the effective absorber was proposed and numerically investigated. 1. Introduction Performance of virtually all modern wide-band communication systems, e.g. mobile services and multimedia wireless networks can be enhanced with the use of novel composite materials with specially designed EM properties. Among such materials photonic crystals [1], chiral and omega media [2] and left-handed materials [3] have been thoroughly inves- tigated recently. These media can be manufactured by embedding conductive or magnetodielectric reso- nance inclusions in the host medium. As a rule com- plex microstructure of composite materials leads to their macroscopic anisotropy. The main reasons for such anisotropy are the complicated shape of inclu- sions, ordered spatial arrangement of the particles, electromagnetic anisotropy of the host medium and in some cases electromagnetic interaction between particles. 2. Statement of the Problem and Solution Scheme We consider impulse plane wave ( )exp( )in in inE e F t ik R= ⋅ obliquely incident in the direction of the vector ink on a homogeneous anisotropic layer that occupies the domain of space ,x y−∞ < < ∞ , 0 z d< < . EM properties of the medium are modeled by the constitutive equa- tions [4]: ( ) ( ) ˆ ˆ4 , ˆ ˆ4 , ee em me mm D E E H B H E H π χ χ π χ χ = + ∗ + ∗ = + ∗ + ∗ (1) where the asterisk stands for the time convolution integral ( ) ( ) ( )ˆ ˆ, , , t E R t R t t E R t dtντ ντχ χ −∞ ′ ′ ′∗ = − ⋅∫ , involving second rank tensor susceptibilities ˆντχ ( ), ,e mν τ = . The cross-susceptibilities ˆ ,em meχ arise due to spatial dispersion of the medium. The boundary value problem includes the Maxwell equa- tions along with standard boundary conditions. Be- sides, the susceptibilities kernels ˆντχ are assumed to be identically zero for 0t < due to causality. EM scattering problems in stratified anisotropic medium can be efficiently solved by reducing the vector boundary problem to the equivalent scalar one for the so called potentials [5]. This procedure is based on the EM field decomposition on the trans- versal and longitudinal, with respect to the stratifica- tion axis, components 0 0,z zE E z E H H z H⊥ ⊥= + = + , projecting the Maxwell equations on the special spa- tial basis 0 0, ,z z ⊥ ⊥×∇ ∇ with subsequent elimina- tion of the longitudinal components. As a result we have the coupled system of two integral-differential equations for the scalar functions Ε,Η [ ]( ) [ ]( )0, , . t r z t z E H dt⊥ ⊥ ⊥ −∞ ′Ε Η = ⋅ ∇ ×∫ (2) The basic advantages of such approach are reduction of the number of unknown quantities, coordinate A.V. Malyuskin, S.N. Shulga 402 Radio Physics and Radio Astronomy, 2002, v. 7, No. 4 invariance and the possibility of various numerical methods to be applied. The vector EM field can be reconstructed straightforwardly from potentialsΕ,Η , but some physical quantities, e.g. reflection and transmission coefficients, are represented directly in terms of potentials (2). 3. The Physical Model for Composite Wideband EM Absorber The concept of perfectly matched layer (PML), re- flectionless for any angle of monochromatic plane wave incidence has been discussed lately. In [6] the model of PML for the wideband signals was pro- posed using the concept of time-derivative Lorentz medium (TDLM). In such medium field time deriva- tives contribute to the polarization provided that the medium possesses both electric and magnetic proper- ties. Physically time derivative behaviors allow one to broaden the frequency region in which a well- known matching condition ε µ= is satisfied [6]. The main problem with PML however is that it is principally unrealizable with only passive compo- nents. Idea proposed in [6] can be realized with the use of spatially dispersive anisotropic medium with tensor susceptibilities of the special kind || 0 0 0 ˆ ˆˆ ˆ,I z z z Iνν νν νν ντ ντχ χ χ χ χ⊥ ⊥ ⊥= + = × , (3) where 0 0 0 0Î x x y y⊥ = + . These materials can be engineered using single- or multi-resonance non- closed conductive elements with complex shape. As a particular example of physically realizable alterna- tive of PML we consider below the material formed by the cubic lattice of “omega” [2] particles with ferrite cores. In Fig. 1 the reflection coefficient for the case of normal incidence of quasimonochromatic [6], Gaus- sian ( ) ( )( ) ( )[ ]327 7 /6 2 1 1 2 1F t x x= − − − − , and Laguerre ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] 2 00.7 , exp 2 exp , / ! m m m m F t L x L x x d L x x x x t T m dx = − − = − = E-polarized pulses on anisotropic composite slab backed with the perfect conductor is shown as a func- tion of parameter βχ . Parameter βχ measures the contribution of time derivative terms in the electric and magnetic transversal susceptibility kernels ( ) ( ) 0 2 2, 0 0 cos 1 2 sin 2 t at t e at a β νν β α ω χ χ χω χ ω Γ− ⊥ −     = Γ  − −     , where 2 2 2 0 / 4a ω= − Γ , 0ω is the resonance fre- quency, Γ is the damping coefficient, αχ is the usual Lorenz susceptibility term [6]. For the numerical computations we choose these parameters to fit the results presented in [6], particularly period 100T = fs. In Fig. 1 curves 1 and 2 correspond to the Gaussian and quasi monochromatic pulse scatter- ing from PML TDLM [6], curve 3 corresponds to the case of Laguerre pulse scattering from composite layer with material parameters(3). Fig. 1 demon- strates that non-reflecting properties of anisotropic composite material (3) can be made very efficient, in principle the same order as the PML TDLM ones. 0 10 20 30 40 -120 -100 -80 -60 -40 -20 0 1- Gaussian pulse scat. (PML TDLM) 2 - Quasimonochromatic pulse scat. (PML TDLM) 3 - Laguerre pulse scat. (bianisotropic slab) 3 2 1R ef le ct io n co ef ic ie nt , d B χ β (105) Fig. 1. EMP reflection coefficient for anisotropic composite layer backed with PEC 4. Conclusion In this report the general scheme for handling tran- sient EM problems in layered dispersive anisotropic medium is outlined. The model of wideband absorber is proposed and numerically investigated. References 1. T. Krauss, R. De La Rue. Progress in Quantum Elec- tronics. 23, 51(1999). 2. I.V. Lindell, A.H. Sihvola. IEICE Trans. Electronics. 7, 114 (1996). 3. N. Engheta. Int. Conf. MMET*02. 175 (2002). 4. A. Karlsson, G.Kristensson. J. Electromagn. Waves Applicat. 6, 537 (1992). 5. A. Malyuskin, V. Shulga, S. Shulga. Radio Physics &Radio Astronomy. 5(3), 291 (2000). 6. R. Ziolkowski. IEEE Trans. AP-45, 656 (1999). Transient Electromagnetic Wave Scattering from Dispersive Anisotropic Layered Medium Radio Physics and Radio Astronomy, 2002, v. 7, No. 4 403 НЕСТАЦИОНАРНОЕ РАССЕЯНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН В АНИЗОТРОПНОЙ ДИСПЕРГИРУЮЩЕЙ СЛОИСТОЙ СРЕДЕ А.В. Малюскин, С.Н. Шульга В работе исследуется нестационарное рассеяние электромагнитных волн в анизотропной слоистой среде с пространственной и временной дисперсией. Анизо- тропная среда описывается материальными уравне- ниями типа временной свертки с ядрами восприимчи- вости, представляющими собой тензоры второго ранга. Предложена и численно исследована модель широко- полосного поглощающего покрытия. НЕСТАЦІОНАРНЕ РОЗСІЯННЯ ЕЛЕКТРОМАГНІТНИХ ХВИЛЬ В АНІЗОТРОПНОМУ ДИСПЕРГУЮЧОМУ ШАРУВАТОМУ СЕРЕДОВИЩІ О.В. Малюскін, С.М. Шульга У роботі досліджується нестаціонарне розсіяння електромагнітних хвиль в анізотропному шаруватому середовищі з просторовою і часовою дисперсією. Ані- зотропне середовище описується матеріальними рів- няннями типу часової згортки з ядрами сприйнятливо- сті, що являють собою тензори другого рангу. Запро- понована і чисельно досліджена модель широкосмуго- вого поглинаючого покриття.