Ultra-Wideband (UWB) Radar for the Remote Measuring of Main Parameters of Patient's Vital Activity
The capability of UWB radar usage in medicine the for remote measuring of patient’s heart activity and respiration is considered. The measuring method is described and practical results of the tests are cited. The possibility of the radar implementation in some other fields is shown.
Збережено в:
Дата: | 2002 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Радіоастрономічний інститут НАН України
2002
|
Назва видання: | Радиофизика и радиоастрономия |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/122347 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Ultra-Wideband (UWB) Radar for the Remote Measuring of Main Parameters of Patient's Vital Activity / I.J. Immoreev, S.V. Samkov // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 4. — С. 404-407. — Бібліогр.: 3 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-122347 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1223472017-07-03T03:03:30Z Ultra-Wideband (UWB) Radar for the Remote Measuring of Main Parameters of Patient's Vital Activity Immoreev, I.J. Samkov, S.V. The capability of UWB radar usage in medicine the for remote measuring of patient’s heart activity and respiration is considered. The measuring method is described and practical results of the tests are cited. The possibility of the radar implementation in some other fields is shown. Рассматривается возможность использования широкополосного радара в медицине для дистанционного измерения сердечной и дыхательной деятельности пациентов. Описан метод измерений и приведены практические результаты исследований. Розглянуто можливість використання широкосмугового радара в медицині для дистанційного вимірювання серцевої та дихальної діяльності пацієнтів. Описано метод вимірювань та наведено практичні результати досліджень. 2002 Article Ultra-Wideband (UWB) Radar for the Remote Measuring of Main Parameters of Patient's Vital Activity / I.J. Immoreev, S.V. Samkov // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 4. — С. 404-407. — Бібліогр.: 3 назв. — англ. 1027-9636 http://dspace.nbuv.gov.ua/handle/123456789/122347 en Радиофизика и радиоастрономия Радіоастрономічний інститут НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The capability of UWB radar usage in medicine the for remote measuring of patient’s heart activity and respiration is considered. The measuring method is described and practical results of the tests are cited. The possibility of the radar implementation in some other fields is shown. |
format |
Article |
author |
Immoreev, I.J. Samkov, S.V. |
spellingShingle |
Immoreev, I.J. Samkov, S.V. Ultra-Wideband (UWB) Radar for the Remote Measuring of Main Parameters of Patient's Vital Activity Радиофизика и радиоастрономия |
author_facet |
Immoreev, I.J. Samkov, S.V. |
author_sort |
Immoreev, I.J. |
title |
Ultra-Wideband (UWB) Radar for the Remote Measuring of Main Parameters of Patient's Vital Activity |
title_short |
Ultra-Wideband (UWB) Radar for the Remote Measuring of Main Parameters of Patient's Vital Activity |
title_full |
Ultra-Wideband (UWB) Radar for the Remote Measuring of Main Parameters of Patient's Vital Activity |
title_fullStr |
Ultra-Wideband (UWB) Radar for the Remote Measuring of Main Parameters of Patient's Vital Activity |
title_full_unstemmed |
Ultra-Wideband (UWB) Radar for the Remote Measuring of Main Parameters of Patient's Vital Activity |
title_sort |
ultra-wideband (uwb) radar for the remote measuring of main parameters of patient's vital activity |
publisher |
Радіоастрономічний інститут НАН України |
publishDate |
2002 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/122347 |
citation_txt |
Ultra-Wideband (UWB) Radar for the Remote Measuring of Main Parameters of Patient's Vital Activity / I.J. Immoreev, S.V. Samkov // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 4. — С. 404-407. — Бібліогр.: 3 назв. — англ. |
series |
Радиофизика и радиоастрономия |
work_keys_str_mv |
AT immoreevij ultrawidebanduwbradarfortheremotemeasuringofmainparametersofpatientsvitalactivity AT samkovsv ultrawidebanduwbradarfortheremotemeasuringofmainparametersofpatientsvitalactivity |
first_indexed |
2025-07-08T21:33:10Z |
last_indexed |
2025-07-08T21:33:10Z |
_version_ |
1837116052801060864 |
fulltext |
Radio Physics and Radio Astronomy, 2002, v. 7, No. 4, pp. 404-407
ULTRA-WIDEBAND (UWB) RADAR FOR THE REMOTE
MEASURING OF MAIN PARAMETERS OF PATIENT'S
VITAL ACTIVITY
I.J. Immoreev, Senior Member IEEE, S.V. Samkov
Moscow Aviation Institute
Gospitalny val, Home 5, block 18, apt 314. 105094, Moscow, Russia
E-mail: immoreev@aha.ru, ru3dkw@mail.ru
The capability of UWB radar usage in medicine the for remote measuring of patient’s heart activity and
respiration is considered. The measuring method is described and practical results of the tests are cited. The pos-
sibility of the radar implementation in some other fields is shown.
1. Introduction
The UWB radar represented in the report serves for
the non-contact measuring of parameters of person’s
respiration and heart activity. It is appointed for work
at clinics and for home use. The permanent monitor-
ing of patients with heart troubles or cardio diseased
patients is executed and statistics of major parameters
of person’s vital activity is accumulated with its help.
UWB radar permits to carry out the radar detec-
tion of the people behind different obstacles (walls,
vegetation and so on) due to their motion or the mo-
tion of their thorax and heartbeat in the case of mo-
tionless state. Thus, it can be used by rescue services
for the search of people under building wreckages
and snow-slides. Besides, this radar can be used by
law-enforcement services for the search of criminals
hiding under different covers.
2. The Measuring Method and Its
Advantages
The non-contact measuring method of the frequency
of person’s respiration and cardiac contractions is
founded on the measuring of the acceleration of per-
son’s heart and thorax motion.
The measuring is executed by the radar method.
The ability of electromagnetic waves to partially re-
flect from the boundary between two media and
penetrate through it is in the base of this method.
UWB signal with duration between 0.2 and 1
nanosecond is chosen to transmit electromagnetic
energy. Such signal permits to:
1. enlarge the resolution ability of radar, to measure
parameters of heart and thorax motion sepa-
rately;
2. diminish the minimal distance at which the
measurements are executed;
3. decrease the spectral density of the radiated sig-
nal power and the electromagnetic radiation level
irradiating the physician, patient, hospital
equipment;
4. diminish the sizes of device;
5. increase the device protection from outdoor in-
terference and enhance the reliability of meas-
urements.
3. The Description of the Non-Contact
Measuring Method
The essence of the method is like this.
The radar transmitter generates the sequence of
short pulses with the leading-edge duration of 250
picoseconds order (Fig. 1) which excite antenna and
are radiated in space (the radiated pulse and its spec-
trum are shown in Fig. 2,3).
The pulse repetition cycle equals
�� � �� ,
where � is spatial distance between pulses, � is the
velocity of light (m/s). The pulse repetition frequency
equals
�� �� � � �� � .
Fig. 1. The transmitter video pulse
Ultra-Wideband (UWB) Radar for the Remote Measuring of Main Parameters of Patient's Vital Activity
Radio Physics and Radio Astronomy, 2002, v. 7, No. 4 405
Fig. 2. The pulse radiated by antenna
Fig. 3. Amplitude-frequency spectrum of the radi-
ated signal
This pulse sequence is reflected from the object.
The pulse repetition cycle remains invariable if the
object is motionless.
Under the motion of object by the harmonic law
the velocity of its motion varies as
� ����
� �
� � ��� .
As a result, the spatial distance between the
pulses is
� ����
� � �
� � �� ��� � ,
the pulse repetition cycle
� ����
� �
�
� �� �
�
�
��
� ,
and the pulse repetition frequency
� � � �
�
������
�
�
� �� � �
� �
�
� �� � �� �
�
��
� � �
�
�
.
Thus, we obtain the frequency-modulated signal
with non-linear dependence of the signal frequency
on the velocity of object’s motion. Time dependence
of the relative variation of the repetition frequency of
pulses reflected from the heart is shown in Fig. 4.
Fig. 4. The relative variation of the repetition fre-
quency of pulses reflected from the heart under
Vs = 0.005 m/s
The modulated sequence of pulses carrying the
information on the parameters and character of the
examined organs is put to initial processing in the
radar transmitter, digitized and input into computer
for further processing and the selection of the needed
information.
4. The Block Scheme of UWB Radar
A simplified block scheme of the radar is represented
in Fig. 5
Fig. 5. A simplified block scheme of UWB radar
The oscillator "Oscillator" with controlled pulse
repetition frequency produces rectangular pulses with
frequency of 0.05 – 30 MHz. These pulses enter the
short pulse shaper "Shaper" of a transmitter and the
delay line "Delay Line" of the transmitter gating unit.
The transmitter consists of the short pulse
shaper "Shaper". The pulses from the "Shaper" out-
put are fed to "Transmitting Antenna" and make the
shock excitation of it. "Transmitting Antenna" radi-
ates the short radio-frequency pulses (short r) (Fig.2).
The radiated electromagnetic field pulses are
reflected from the moving surfaces of the thorax and
heart of the examined or detected person. Here the
modulation of pulse repetition frequency arises
(Fig.4). The modulation percentage depends on the
velocity and amplitude of person’s thorax and heart
motion.
The radar works in the conditions of high level
of passive noise from the signals reflected from walls
and stationary objects; which have large amplitudes
and distort the useful signal (Fig.6).
Fig. 6. Time diagram of the received electromag-
netic field
I.J. Immoreev, S.V. Samkov
406 Radio Physics and Radio Astronomy, 2002, v. 7, No. 4
Time slots, opening the receiver at the moment
of the input of the signal reflected from the object at
distance defined, are formed in the receiving path to
eliminate interfering pulses. This task in the radar
design is executed by the gated time discriminator
"Time Discriminator. It consists of fast-acting elec-
tronic switches. The switching time is of 200-300
picoseconds order. The switches connect the receiv-
ing antenna to UWB amplifier at the moments of
signals’ input. These moments are defined by delay
magnitude of control signal at software-controlled
delay line "Delay Line". All the rest time the receiver
is shut. The signals received at time slots are detected
and amplified in integrating amplifier and the signal
carrying the data on person’s thorax and heart motion
is selected at its output.
The gating unit consists of the software-control-
led delay line "Delay Line" and the shaper of short
pulse "Shaper". Time delay, set up by the microproc-
essor-controlled unit "microcontroller", defines the
distance to a patient. Time constant of integration of
"Integrating Amplifier" is chosen depending on the
bandwidth of the desired signal (dynamic characteris-
tics of the motion of object examined). Under detec-
tion of person and measuring of parameters of his
vital activity the bandwidth of desired signal is near
400-500 Hz, which corresponds to accumulation of
10~30 thousand of pulses approximately. The accu-
mulation permits to decrease the average radiated
power of the transmitter and increase the signal-to-
noise ratio at the input of amplifier.
The selected and amplified low-frequency sig-
nal, which is proportional to respiration frequency
and heart contraction, enters analog-digital converter
"ADC". The microprocessor-controlled unit "micro-
controller" directs the work of the radar by the given
algorithms, monitors the state of major units and
modules and provides data output for further digital
processing in computer. The selection of moving
targets, fast Fourier transform and the digital filtra-
tion are software-programmed.
Table 1. The results of two measuring cycles
Time Frequency
Respiration
Fi
rs
t M
an
Heart
Activities
Respiration
Se
co
nd
M
an
Heart
Activities
Ultra-Wideband (UWB) Radar for the Remote Measuring of Main Parameters of Patient's Vital Activity
Radio Physics and Radio Astronomy, 2002, v. 7, No. 4 407
Physically the radar is built up as the modular
hardware. All the modules are shielded to eliminate
each other interference. The antennas connection is
carried out directly to the output connectors of the
radar receiver and transmitter.
5. Implementation
The radar prototype is created and tested with respect
to the principles mentioned. The major specifications
of the prototype are given in the table 2.
Table 2. The major specifications of the prototype
Item Specifications
Antenna pattern (H-
plane) 360° with dipole antenna
Central frequency ~ 5 GHz
Average radiated
power ∼ 0.04 µW
Receiver gate duration ∼ 250 picoseconds
Delay stability range
Limitation on tempera-
ture dependence of RC
component’s parameters
Detection range ∼ 0.06 – 5 m
Motion pass band ~ 0.16 – 5 Hz, Doppler-
like signature
Receiver gain 95 dB
The form of the transmitter and receiver on
antenna boards are shown in Fig. 7.
Fig. 7. The form of the preliminary prototype
The measuring of person’s heart activity and
respiration is executed using the radar prototype. The
results of two measuring cycles are presented in ta-
ble 1. The temporal structure of the processes of res-
piration and heart activity is shown in the left-hand
figures. The gain-frequency spectrums of these proc-
esses are shown in the right-hand figures.
The obtained oscillograms and spectrograms
enable to perform objective estimates of the parame-
ters of person’s vital activity. The further clinical
analysis of the results is carried out in an automatic
mode.
6. Conclusion
The developed radar prototype and the results of its
tests have confirmed the capability and perspective-
ness of the UWB signals applications in medical
analysis, law-enforcement services under extreme
situations, and for other applications.
References
1. Igor Y. Immoreev. “Ultra-Wideband Radar: new op-
portunities, unusual problems, system features”. Pro-
ceeding of Moscow State Technical University, pp 25-
26, December 1998.
2. U.S. Patent No 5573012, 1996.
3. Enrico M. Staderini. “UWB Radars in Medicine”.
IEEE Aerospace and Electronic Systems Magazine,
January 2002.
СВЕРХШИРОКОПОЛОСНЫЕ РАДАРЫ
ДЛЯ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ
ОСНОВНЫХ ЖИЗНЕННЫХ
ПОКАЗАТЕЛЕЙ ПАЦИЕНТОВ
И.Я. Иммореев, С.В. Самков
Рассматривается возможность использования ши-
рокополосного радара в медицине для дистанционного
измерения сердечной и дыхательной деятельности па-
циентов. Описан метод измерений и приведены прак-
тические результаты исследований.
НАДШИРОКОСМУГОВІ РАДАРИ ДЛЯ
ДИСТАНЦІЙНОГО ВИМІРЮВАННЯ
ОСНОВНИХ ЖИТТЄВИХ ПОКАЗНИКІВ
ПАЦІЄНТІВ
І.Я. Імморєєв, С.В. Самков
Розглянуто можливість використання широкосму-
гового радара в медицині для дистанційного вимірю-
вання серцевої та дихальної діяльності пацієнтів. Опи-
сано метод вимірювань та наведено практичні резуль-
тати досліджень.
|