Mathematical Simulation of Ultra Wideband Signals Scattered by Mines Buried in Ground. Algorithms of Mine Detection and Identification
Method of mathematical simulation of ultra wideband signals scattered by metal or dielectric mine and other subsurface objects located in ground or other medium is described. Method allows for getting electromagnetic signals reflected from subsurface objects with arbitrary substance, shape, orientat...
Gespeichert in:
Datum: | 2002 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Радіоастрономічний інститут НАН України
2002
|
Schriftenreihe: | Радиофизика и радиоастрономия |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/122351 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Mathematical Simulation of Ultra Wideband Signals Scattered by Mines Buried in Ground. Algorithms of Mine Detection and Identification / O.I. Sukharevsky, G.S. Zalevsky, A.V. Muzychenko // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 4. — С. 420-423. — Бібліогр.: 4 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-122351 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1223512017-07-03T03:02:54Z Mathematical Simulation of Ultra Wideband Signals Scattered by Mines Buried in Ground. Algorithms of Mine Detection and Identification Sukharevsky, O.I. Zalevsky, G.S. Muzychenko, A.V. Method of mathematical simulation of ultra wideband signals scattered by metal or dielectric mine and other subsurface objects located in ground or other medium is described. Method allows for getting electromagnetic signals reflected from subsurface objects with arbitrary substance, shape, orientation, parameters of the environment the object is in, and scanning with various polarity waves. Results of metal and plastic mine ultra wideband response calculation are discussed. Also algorithm of mine detection and identification based on determination of object natural complex resonances is considered. Описан метод математического моделирования сверхширокополосных сигналов, рассеянных металлической или диэлектрической миной и другими подповерхностными объектами, расположенными в земле или какой-либо другой среде. Метод позволяет получать электромагнитные сигналы, отраженные от подповерхностных объектов из произвольного материала, для произвольных формы, ориентации, параметров окружающей среды, при сканировании волнами произвольной поляризации. Обсуждаются результаты вычисления сверхширокополосного отклика металлической и пластиковой мин. Рассматривается также алгоритм обнаружения и идентификации мин, основанный на определении собственных комплексных резонансов объекта. Описано метод математичного моделювання надширокосмугових сигналів, які розсіяні металевою або діелектричною міною та іншими підповерхневими об’єктами розташованими у землі або якому-небудь іншому середовищі. Метод дозволяє отримувати електромагнітні сигнали, відбиті від підповерхневих об’єктів з довільного матеріалу, для довільних форми, орієнтації, параметрів оточуючого середовища та при скануванні хвилями довільної поляризації. Обговорено результати обчислення надширокосмугового відгуку металевої та пластикової мін. Розглянуто також алгоритм виявлення та ідентифікації мін, що ґрунтується на визначенні власних комплексних резонансів об’єкта. 2002 Article Mathematical Simulation of Ultra Wideband Signals Scattered by Mines Buried in Ground. Algorithms of Mine Detection and Identification / O.I. Sukharevsky, G.S. Zalevsky, A.V. Muzychenko // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 4. — С. 420-423. — Бібліогр.: 4 назв. — англ. 1027-9636 http://dspace.nbuv.gov.ua/handle/123456789/122351 en Радиофизика и радиоастрономия Радіоастрономічний інститут НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Method of mathematical simulation of ultra wideband signals scattered by metal or dielectric mine and other subsurface objects located in ground or other medium is described. Method allows for getting electromagnetic signals reflected from subsurface objects with arbitrary substance, shape, orientation, parameters of the environment the object is in, and scanning with various polarity waves. Results of metal and plastic mine ultra wideband response calculation are discussed. Also algorithm of mine detection and identification based on determination of object natural complex resonances is considered. |
format |
Article |
author |
Sukharevsky, O.I. Zalevsky, G.S. Muzychenko, A.V. |
spellingShingle |
Sukharevsky, O.I. Zalevsky, G.S. Muzychenko, A.V. Mathematical Simulation of Ultra Wideband Signals Scattered by Mines Buried in Ground. Algorithms of Mine Detection and Identification Радиофизика и радиоастрономия |
author_facet |
Sukharevsky, O.I. Zalevsky, G.S. Muzychenko, A.V. |
author_sort |
Sukharevsky, O.I. |
title |
Mathematical Simulation of Ultra Wideband Signals Scattered by Mines Buried in Ground. Algorithms of Mine Detection and Identification |
title_short |
Mathematical Simulation of Ultra Wideband Signals Scattered by Mines Buried in Ground. Algorithms of Mine Detection and Identification |
title_full |
Mathematical Simulation of Ultra Wideband Signals Scattered by Mines Buried in Ground. Algorithms of Mine Detection and Identification |
title_fullStr |
Mathematical Simulation of Ultra Wideband Signals Scattered by Mines Buried in Ground. Algorithms of Mine Detection and Identification |
title_full_unstemmed |
Mathematical Simulation of Ultra Wideband Signals Scattered by Mines Buried in Ground. Algorithms of Mine Detection and Identification |
title_sort |
mathematical simulation of ultra wideband signals scattered by mines buried in ground. algorithms of mine detection and identification |
publisher |
Радіоастрономічний інститут НАН України |
publishDate |
2002 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/122351 |
citation_txt |
Mathematical Simulation of Ultra Wideband Signals Scattered by Mines Buried in Ground. Algorithms of Mine Detection and Identification / O.I. Sukharevsky, G.S. Zalevsky, A.V. Muzychenko // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 4. — С. 420-423. — Бібліогр.: 4 назв. — англ. |
series |
Радиофизика и радиоастрономия |
work_keys_str_mv |
AT sukharevskyoi mathematicalsimulationofultrawidebandsignalsscatteredbyminesburiedingroundalgorithmsofminedetectionandidentification AT zalevskygs mathematicalsimulationofultrawidebandsignalsscatteredbyminesburiedingroundalgorithmsofminedetectionandidentification AT muzychenkoav mathematicalsimulationofultrawidebandsignalsscatteredbyminesburiedingroundalgorithmsofminedetectionandidentification |
first_indexed |
2025-07-08T21:33:33Z |
last_indexed |
2025-07-08T21:33:33Z |
_version_ |
1837116075502731264 |
fulltext |
Radio Physics and Radio Astronomy, 2002, v. 7, No. 4, pp. 420-423
MATHEMATICAL SIMULATION OF ULTRA
WIDEBAND SIGNALS SCATTERED BY MINES BURIED
IN GROUND. ALGORITHMS OF MINE DETECTION
AND IDENTIFICATION
O.I. Sukharevsky, G.S. Zalevsky, A.V. Muzychenko
Kharkov Military University
6 Svobody Sq. 61043, Kharkov, Ukraine
Phone: (0572) 404141 ext. 290
E-mail: zalevsky@hotbox.ru.
Method of mathematical simulation of ultra wideband signals scattered by metal or dielectric mine and
other subsurface objects located in ground or other medium is described. Method allows for getting electromag-
netic signals reflected from subsurface objects with arbitrary substance, shape, orientation, parameters of the
environment the object is in, and scanning with various polarity waves. Results of metal and plastic mine ultra
wideband response calculation are discussed. Also algorithm of mine detection and identification based on de-
termination of object natural complex resonances is considered.
1. Introduction
At present the radar systems take a wide application
for the detection of mines and other subsurface ob-
jects (SO) located in the ground or other dielectric
medium at small distance from medium interface.
Advantages of electromagnetic method for mine de-
tection are conditioned by good penetrability of elec-
tromagnetic waves at the frequency band from 0.1 to
more then 2 GHz in the ground, wide progress in
generation, reception technique, and processing of
radar signals at last decade.
The mine detection is accompanied with several
difficulties: 1) mine detection is accomplished of
strong medium interface reflection, which masked
the signal reflected by mine; 2) electrical parameters
of ground (permittivity and conductivity) signifi-
cantly depend on frequency, humidity, and density of
a ground; 3) ground is a nonuniform medium con-
taining stones, bricks, remains of pipes and other
foreign objects. This fact stimulate the necessity of
identification algorithm using for reducing of condi-
tional probabilities of false solutions; 4) plastic mine
detection is essentially complicated by small differ-
ence between mine permittivity and ambient ground
one. Moreover mines are generally located in near-
field zone of radar antenna system.
Problems stated above denote necessity of ultra
wideband (UWB) signal using for mine detection and
identification.
At the state of creation the SO detection radar it
is important to dispose of information about the fea-
tures of signals scattered from such objects located in
a dispersive medium. In report the method of calcula-
tion of UWB signals scattered by mine and other SO
located in the ground (or other medium) is described.
Developed method is based on solving of integral
equations for the current densities on the object sur-
face and allows calculating of UWB responses of
metal and dielectric objects of arbitrary shape and
orientation, for the various sounding conditions.
2. Mathematical Simulation of Ultra
Wideband Signals Scattered by Mines
Buried in the Ground
In papers [1, 2, 3] mathematical expressions for cal-
culating the electromagnetic fields scattered by metal
and dielectric SO are described in detail.
In the case of metal SO surface Fredholm inte-
gral equation of the second kind for the electric cur-
rent densities on the SO surface was obtained. For
dielectric SO the system of surface Fredholm integral
equations of the second kind for the equivalent elec-
tric and magnetic current densities was obtained.
Also there was obtained integral relations,
which allow to calculate surface, frequency and pulse
responses of metal and dielectric objects of arbitrary
shape and orientation, for the cases of various an-
tenna system locations relative to object, and various
sounding signal polarizations.
Further the results of numerical simulation of
M15, MK7 anti-tank metal mines and DM11 anti-
personnel plastic mine UWB responses are demon-
strated and discussed. Also the results of UWB re-
Mathematical Simulation of Ultra Wideband Signals Scattered by Mines Buried in Ground
Radio Physics and Radio Astronomy, 2002, v. 7, No. 4 421
sponse simulation for the case of thin air layer
formed between the top of dielectric mine and ambi-
ent ground are demonstrated.
For the calculating it was accepted the model
shown in Fig. 1. As the transmitting ( )1 1 1,a aA x y
and the receiving ( )2 2 2,a aA x y elements of bistatic
radar the antennas of small electric dimensions
(magnetic dipoles with vector-moments 1ap , 2ap
correspondingly) were applied. They located in free
half-space 1V (permittivity 1 1ε = ). Vector-
moments were oriented along Ox axis. The distance
between antennas ∆ in horizontal plane, and their
height ah above the ground interface accounted
0.5 m. At the same time the antenna system assumed
completely isolated. In lower dielectric lossy disper-
sive half-space 2V ( ( ) ( ) ( )2 2 2f f i fε ε ε′ ′′= + ), and
adjoining on 1V along the xOy plane the object 3V
was located. The object is filled with material having
permittivity ( ) ( )3 3 3( )f f i fε ε ε′ ′′= + . Regions 1V ,
2V , 3V are uniform. Permeability 1µ = in all con-
cerned regions.
Examined objects were illuminated by UWB
signal with uniform spectrum from 100 to
1000 MHz. Interval between the spectral lines ac-
counted 50 MHz. Magnetizing force amplitude of
wave incident on the ground interface accounted
1 А/m. Module ( ) ( )xH f H f= of scattered field
at reception point was subject to calculation.
SO were located in two types of ground with
various densities ρ , and humidity W : gray loam
having 3
g
cm
1.2 ρ = , 10W = % (ground 1), and
3
g
cm
1.4 ρ = , 20W = % (ground 2); brown loam
with parameters 3
g
cm
1.4 ρ = , 10W = % (ground
3). Frequency dependences of considered ground
electrical parameters were taken from the paper [4].
Coordinates 0x y= = corresponded to object cen-
ter at all considered cases.
����������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������
∆=0.5 m
x
y
0
z А2 ( 2ap )
А1 ( 1ap )
hob
ha
V1 (ε1=1)
V2 ( 222 iε ′′+ε′=ε )
V3 ( 333 iε ′′+ε′=ε )
Fig. 1. Mine buried in the ground
0 . 0 7
0 . 0 9
0 . 1 1
0 . 1 3
0 . 1 5
0 . 1 7
0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
f , М H zа
1
3
2
H ( f ) ,
А / m
0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
f , М H z
0 . 0 7
0 . 0 9
0 . 1 1
0 . 1 3
0 . 1 5
0 . 1 7
4
5
6 7
8
b
А / m
H ( f ) ,
0 . 0 1
0 . 0 2
0 . 0 3
0 . 0 4
0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
f , M H z
А / m
c
1
2
H ( f ) ,
0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
f , M H z
0 . 0 2
0 . 0 4
0 . 0 6
d
4
6
5
А / m
H ( f ) ,
Fig. 2. Frequency responses of metal, anti-tank
mines M15 and MK7
O.I. Sukharevsky, G.S. Zalevsky, A.V. Muzychenko
422 Radio Physics and Radio Astronomy, 2002, v. 7, No. 4
In Fig. 2 are shown frequency responses of
mines M15 и MK7 corresponding to following radar
system coordinates: Fig. 2(а) and 2(с) –
1 20ax = сm, 2 30ax = − сm, 1 2 0a ay y= = ;
Fig. 2(b) and 2(d) – 1 20ax = сm, 1 0ay = ,
2 15.36ax = − сm, 2 35.36ay = cm. Fig. 2(а) and
2(c) show M15 mine responses for its location at
different depth in ground 1 (line 1 – 6obh = сm, 2 –
45obh = сm, 3 – ground interface reflection).
Fig. 2(b) and 2(d) illustrate frequency responses of
M15 (line 4) and MK7 (5) at the same ground and in
the ground 3 (6) at the depth of 6obh = сm. Lines 7
and 8 illustrate the responses that correspond to re-
flection from ground 1 and 3 at the mine absence. In
Fig. 2(c) and 2(d) ground interface reflection is left
out of account.
Frequency responses of M15 and MK7 have the
resonance character. Such these objects stably de-
tected against a background of ground interface re-
flections. Demonstrated results show that the fre-
quency response shape sufficiently depends on
ground parameters, and also on depth of the object.
Fig. 3а illustrates the frequency response of
DM11 mine in ground 1 (line 2) corresponding the
radar location considered in Fig. 2(b) and 2(d). On
this figure also considered the response of the thin air
layer of 3 mm thickness (line 3, ellipsoid with semi-
axes: 4a b= = сm, 1.5c = mm). In Fig. 3(b)
responses of mine DM11 and air layer in the same
0 . 1 1
0 . 1 2
0 . 1 3
0 . 1 5
0 . 1 6
0 . 1 7
0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
f , M H z
А /m
1
2
3
а
H ( f ) ,
0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
f , M H z
m А / m
0 . 4
0 . 8
1 . 2
1 . 6
2
1
2
4
3
H ( f ) ,
b
Fig. 3. Frequency responses of plastic anti-personel
mine DM11 and thin air layer
t , n s
- 0 .4
- 0 .2
0 . 2
0 . 4
0 . 6
0 . 8Z ( t )
1 086420
a
- 0 .4
- 0 .2
0 . 2
0 . 4
0 . 6
0 . 8Z ( t )
1 086420
t , n s
b
- 0 . 6
- 0 . 3
0 . 3
0 . 6
0 . 9
Z ( t )
t , n s
1 086420
c
Z ( t )
t , n s
1 086420
- 0 .0 3
- 0 .0 2
- 0 .0 1
0 . 0 1
0 . 0 2
0 . 0 3
d
Fig. 4. Pulse responses of mines
Mathematical Simulation of Ultra Wideband Signals Scattered by Mines Buried in Ground
Radio Physics and Radio Astronomy, 2002, v. 7, No. 4 423
ground (line 1 – DM11, 3 – air layer) and in the
ground 2 (line 2 – DM11, 4 – air layer) are shown.
On graphs demonstrated in Fig. 3(b) ground interface
reflection is left out of account. Considered objects
were located at the depth of 6obh = сm. The results
show that in certain parameters of ground amplitude
of thin air layer reflection can exceed the amplitude
of plastic mine response. Amplitude of dielectric
object responses depend on ground parameters, depth
of location, and also on difference of SO permittivity
and ambient ground one. Results demonstrated in
Fig. 2 and 3 show that the plastic mine detection is
sufficiently complicated relatively to metal mine de-
tection. Further the pulse responses of considered SO
are demonstrated.
In Fig. 4 are shown pulse responses of M15 (а),
MK7 (b), DM11 (d), located in ground 1, and MK7
in ground 3 (c). Mines was buried at the depth of
6obh = сm. Coordinates 1 20ax = сm, 1 0ay = ,
2 15.36ax = − сm, 2 35.36ay = cm corresponded
to radar locations.
Analysis of demonstrated responses shows that
amplitude of metal and dielectric mine responses
ratio accounts 30 at the same ground. The results of
mathematical simulation show that for mine detec-
tion and identification it is necessary to know the
ground parameters.
3. Mine Identification Algorithms
The obtained data could be used for developing algo-
rithms of detection and identification of SO.
A mathematical model that allows for identify-
ing objects those are supposed to be identified
amongst others through detecting their nature reso-
nance frequencies out of objects’ UWB responses
were developed.
As recognition criteria suggested algorithms for
recognition of metal and dielectric objects use its
natural resonance frequencies to which imaginary
parts of natural complex resonances correspond.
As an example in Fig. 5 we took the distribution
of complex resonances of mine-like object when the
position of the antenna system changes within the
same horizon (the same fixed height). Ovals outline
resonances belonging to the same groups. The analysis
showed that the average deviation of their imaginary
parts makes about 4 %. Approximately the same val-
ues are obtained when one changes the distance be-
tween the transmitting and receiving antenna and the
height the antenna system above the ground interface.
The research shows that nature resonance fre-
quencies practically do not depend on probing condi-
tions. It gives a possibility to reduce the required ca-
pacity of the memory part of the recognition device.
Operation of the recognition device that uses the
algorithms requires performance of a limited number
of simple arithmetic operations.
References
1. O.I. Sukharevsky, G.S. Zalevsky. Radiofyzika i radio-
astronomiya. 3, № 1, 37 (1998).
2. O.I. Sukharevsky, G.S. Zalevsky. Electromagnitnuye
volny i electronnuye systemy. 6, № 1, 28 (2001).
3. O.I. Sukharevsky, G.S. Zalevsky, A.V. Muzychenko.
Radiotehnika. № 6, 6 (2001).
4. D. Hipp. ТIIER. 62, № 1, 122 (1974).
МАТЕМАТИЧЕСКОЕ
МОДЕЛИРОВАНИЕ
СВЕРХШИРОКОПОЛОСНЫХ
СИГНАЛОВ, РАССЕЯННЫХ МИНАМИ,
НАХОДЯЩИМИСЯ В ЗЕМЛЕ.
АЛГОРИТМЫ ВЫЯВЛЕНИЯ И
ИДЕНТИФИКАЦИИ
О.И. Сухаревский, Г.С. Залевский, А.В. Музыченко
Описан метод математического моделирования
сверхширокополосных сигналов, рассеянных металли-
ческой или диэлектрической миной и другими подпо-
верхностными объектами, расположенными в земле
или какой-либо другой среде. Метод позволяет полу-
чать электромагнитные сигналы, отраженные от под-
поверхностных объектов из произвольного материала,
для произвольных формы, ориентации, параметров
окружающей среды, при сканировании волнами произ-
вольной поляризации. Обсуждаются результаты вы-
числения сверхширокополосного отклика металличе-
ской и пластиковой мин. Рассматривается также алго-
ритм обнаружения и идентификации мин, основанный
на определении собственных комплексных резонансов
объекта.
МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ
НАДШИРОКОСМУГОВИХ СИГНАЛІВ,
ЯКІ РОЗСІЯНІ МІНАМИ, ЩО
ЗНАХОДЯТЬСЯ У ЗЕМЛІ. АЛГОРИТМИ
ВИЯВЛЕННЯ ТА ІДЕНТИФІКАЦІЇ
О.І. Сухаревський, Г.С. Залевський,
А.В. Музиченко
Описано метод математичного моделювання
надширокосмугових сигналів, які розсіяні металевою
або діелектричною міною та іншими підповерхневими
об’єктами розташованими у землі або якому-небудь
іншому середовищі. Метод дозволяє отримувати елек-
тромагнітні сигнали, відбиті від підповерхневих
об’єктів з довільного матеріалу, для довільних форми,
орієнтації, параметрів оточуючого середовища та при
скануванні хвилями довільної поляризації. Обговорено
результати обчислення надширокосмугового відгуку
металевої та пластикової мін. Розглянуто також алго-
ритм виявлення та ідентифікації мін, що ґрунтується на
визначенні власних комплексних резонансів об’єкта.
|