Estimating Cloud and Rain Parameters from Doppler Radar Data
Real-time mapping of the parameters of precipitating water clouds and rain making use of a vertically-directed Doppler radar is an important problem. In this paper, an algorithm based on an independent estimation of the droplet effective diameter and concentration is suggested. This approach differs...
Gespeichert in:
Datum: | 2003 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Радіоастрономічний інститут НАН України
2003
|
Schriftenreihe: | Радиофизика и радиоастрономия |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/122423 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Estimating Cloud and Rain Parameters from Doppler Radar Data / O.O. Bezvesilniy, G. Peters, D.M. Vavriv // Радиофизика и радиоастрономия. — 2003. — Т. 8, № 3. — С. 296-302. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-122423 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1224232017-07-04T03:03:14Z Estimating Cloud and Rain Parameters from Doppler Radar Data Bezvesilniy, O.O. Peters, G. Vavriv, D.M. Real-time mapping of the parameters of precipitating water clouds and rain making use of a vertically-directed Doppler radar is an important problem. In this paper, an algorithm based on an independent estimation of the droplet effective diameter and concentration is suggested. This approach differs from the Marshall-Palmer retrieval procedure that is based on a single estimated parameter, the radar reflectivity factor. It is shown that the Marshall-Palmer approach can provide good estimates of the averaged parameters, however is not suitable for producing the high resolution time-height maps of the parameters. The two-parameter retrieval algorithm under discussion was tested using the data obtained with the 36 GHz polarimetric Doppler cloud radar MIRA-36. The results of the measurements and their processing are presented. The algorithm suggested has appeared to be applicable for real-time measurements with the vertically-directed Doppler radars. Построение изображений параметров водяных облаков, дающих осадки, и дождя с помощью вертикально направленного доплеровского радиолокатора является важной задачей. В статье предложен алгоритм, основанный на независимой оценке эффективного диаметра и концентрации капель. Этот подход отличается от подхода Маршалла-Пальмера, основанного на оценке одного параметра – радиолокационной отражаемости. Показано, что подход Маршалла-Пальмера обеспечивает хорошую оценку усредненных параметров, но не годится для построения изображений параметров с высоким разрешением в координатах время – высота. Рассматриваемый подход с двумя параметрами был испытан на поляриметрическом доплеровском радиолокаторе MIRA-36. В статье приведены результаты измерений и их обработки. Предложенный алгоритм оказался приемлемым для работы в реальном времени на вертикально направленных доплеровских радиолокаторах. Побудова зображень параметрів водяних хмар, що дають опади, та дощу за допомогою вертикально орієнтованого доплерівського радіолокатора є важливою задачею. В статті запропоновано алгоритм, що базується на незалежній оцінці ефективного діаметра та концентрації крапель. Цей підхід відрізняється від підходу Маршала-Пальмера, що базується на оцінці одного параметра – коефіцієнта радіолокаційного відбиття. Показано, що підхід Маршала-Пальмера забезпечує добру оцінку усереднених параметрів, але не придатний для побудови зображень параметрів з високим розділенням в координатах час – висота. Розглянутий підхід з двома параметрами було випробувано на поляриметричному доплерівському радіолокаторі MIRA-36. В статті наведено результати вимірювань та їх обробки. Запропонований алгоритм виявився придатним для роботи у реальному часі на вертикально спрямованих доплерівських радіолокаторах. 2003 Article Estimating Cloud and Rain Parameters from Doppler Radar Data / O.O. Bezvesilniy, G. Peters, D.M. Vavriv // Радиофизика и радиоастрономия. — 2003. — Т. 8, № 3. — С. 296-302. — Бібліогр.: 7 назв. — англ. 1027-9636 http://dspace.nbuv.gov.ua/handle/123456789/122423 en Радиофизика и радиоастрономия Радіоастрономічний інститут НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Real-time mapping of the parameters of precipitating water clouds and rain making use of a vertically-directed Doppler radar is an important problem. In this paper, an algorithm based on an independent estimation of the droplet effective diameter and concentration is suggested. This approach differs from the Marshall-Palmer retrieval procedure that is based on a single estimated parameter, the radar reflectivity factor. It is shown that the Marshall-Palmer approach can provide good estimates of the averaged parameters, however is not suitable for producing the high resolution time-height maps of the parameters. The two-parameter retrieval algorithm under discussion was tested using the data obtained with the 36 GHz polarimetric Doppler cloud radar MIRA-36. The results of the measurements and their processing are presented. The algorithm suggested has appeared to be applicable for real-time measurements with the vertically-directed Doppler radars. |
format |
Article |
author |
Bezvesilniy, O.O. Peters, G. Vavriv, D.M. |
spellingShingle |
Bezvesilniy, O.O. Peters, G. Vavriv, D.M. Estimating Cloud and Rain Parameters from Doppler Radar Data Радиофизика и радиоастрономия |
author_facet |
Bezvesilniy, O.O. Peters, G. Vavriv, D.M. |
author_sort |
Bezvesilniy, O.O. |
title |
Estimating Cloud and Rain Parameters from Doppler Radar Data |
title_short |
Estimating Cloud and Rain Parameters from Doppler Radar Data |
title_full |
Estimating Cloud and Rain Parameters from Doppler Radar Data |
title_fullStr |
Estimating Cloud and Rain Parameters from Doppler Radar Data |
title_full_unstemmed |
Estimating Cloud and Rain Parameters from Doppler Radar Data |
title_sort |
estimating cloud and rain parameters from doppler radar data |
publisher |
Радіоастрономічний інститут НАН України |
publishDate |
2003 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/122423 |
citation_txt |
Estimating Cloud and Rain Parameters from Doppler Radar Data / O.O. Bezvesilniy, G. Peters, D.M. Vavriv // Радиофизика и радиоастрономия. — 2003. — Т. 8, № 3. — С. 296-302. — Бібліогр.: 7 назв. — англ. |
series |
Радиофизика и радиоастрономия |
work_keys_str_mv |
AT bezvesilniyoo estimatingcloudandrainparametersfromdopplerradardata AT petersg estimatingcloudandrainparametersfromdopplerradardata AT vavrivdm estimatingcloudandrainparametersfromdopplerradardata |
first_indexed |
2025-07-08T21:41:51Z |
last_indexed |
2025-07-08T21:41:51Z |
_version_ |
1837116593571627008 |
fulltext |
Ðàäèîôèçèêà è ðàäèîàñòðîíîìèÿ, 2003, ò. 8, ¹3, ñòð. 296-302
© O. Bezvesilniy, G. Peters, and D. Vavriv, 2003
Estimating Cloud and Rain Parameters from Doppler Radar Data
O. Bezvesilniy, G. Peters1, and D. Vavriv
Institute of Radio Astronomy,
Chervonopraporna St. 4,
61002, Kharkov, Ukraine,
Email: obezv@rian.kharkov.ua
Email: vavriv@rian.kharkov.ua
1Meteorological Institute, University Hamburg,
Bundesstrasse 55,
D 20146 Hamburg, Germany,
E-mail: peters@miraculix.dkrz.de
Received December 3, 2002
Real-time mapping of the parameters of precipitating water clouds and rain making use of a verti-
cally-directed Doppler radar is an important problem. In this paper, an algorithm based on an indepen-
dent estimation of the droplet effective diameter and concentration is suggested. This approach differs
from the Marshall-Palmer retrieval procedure that is based on a single estimated parameter, the radar
reflectivity factor.
It is shown that the Marshall-Palmer approach can provide good estimates of the averaged param-
eters, however is not suitable for producing the high resolution time-height maps of the parameters. The
two-parameter retrieval algorithm under discussion was tested using the data obtained with the 36 GHz
polarimetric Doppler cloud radar MIRA-36. The results of the measurements and their processing are
presented. The algorithm suggested has appeared to be applicable for real-time measurements with the
vertically-directed Doppler radars.
1. Introduction
The paper is devoted to real-time retrieval of
the water cloud and rain parameters with a verti-
cally-directed Doppler radar. This problem has
been considered by many researchers [1-5] be-
cause of its importance for practical applications.
One of the basic characteristics of water clouds
and rain is the drop size distribution (DSD). The
typical, often used form of the DSD is the Gam-
ma-distribution [1-2],
00
0 0
1
( ) .
( 1)
D
DN D
N D e
D D
µ −
= Γ µ +
(1)
Here ( )Γ µ is the Gamma-function. This form of
the DSD depends on three parameters, namely
the droplet concentration, 0N 3[m ];− the droplet
effective diameter, 0D [mm]; and the parameter
µ, which is assumed to be known. Two particular
cases are often considered [1-2], specifically
0,µ = which is used for rain drops, and 2,µ =
which is for cloud droplets.
The drop size distribution determines several
integral parameters. For example, the liquid wa-
ter content, LWC 3[g / m ], is proportional to the
third moment of the distribution,
3 3
0
10 ( )d .
6
LWC D N D D
∞
− π= ∫
Substituting the DSD in the form (1), one can
obtain the following expressions:
3 3
0 0
( 1 3)
10 ,
6 ( 1)
LWC N D− π Γ µ + +=
Γ µ +
Estimating Cloud and Rain Parameters from Doppler Radar Data
297Ðàäèîôèçèêà è ðàäèîàñòðîíîìèÿ, 2003, ò. 8, ¹3
or
3 3
0 010 ,LWC N D−= π (for 0).µ = (2)
The radar reflectivity factor, Z 6 3[mm m ],−⋅
which describes the backscattered power is pro-
portional to the sixth moment of the distribution,
6
0
( )d ,Z D N D D
∞
= ∫
so that
6
0 0
( 1 6)
,
( 1)
Z N D
Γ µ + +=
Γ µ +
or
6
0 0720 ,Z N D= ⋅ (for 0).µ = (3)
Similarly to the effective diameter and the drop-
let concentration, the droplet velocity, V [m/s], is
an important microphysical parameter. It is a sum
of the terminal fall velocity of droplet, ( ) 0,gV D >
the mean air flow velocity, ,aV and the turbulent
air flow velocity, tV [1-4],
( ) .a g tV V V D V= − +
The turbulent velocity of droplets is a random
quantity characterized by a zero-mean Gaussian
distribution [1-3] with the variance .tσ The tur-
bulent velocity is supposed to be independent of
the droplet diameter. The terminal fall velocity
depends on the droplet diameter. We have used
the following approximation [2]:
( )0.670.67
0 0( ) 3.778 ( ) .g gV D D V D D D= ⋅ =
The parameter as important as the rainfall rate,
R [mm/h], depends both on the drop size distri-
bution and the droplet vertical velocity,
( )3 3
0
3.6 10 ( ) ( )d .
6 g aR D V D V N D D
∞
− π= ⋅ −∫
3 3
0 03.6 10
6
R N D− π= ⋅ ×
0
( 1 3 0.67) ( 1 3)
( ) ,
( 1) ( 1)g aV D V
Γ µ + + + Γ µ + +× − Γ µ + Γ µ +
( )3 3
0 0 03.6 10 2.46 ( ) ,g aR N D V D V−= ⋅ π − (4)
(for 0).µ =
Modern vertically-directed Doppler radars pro-
vide the real-time images of the radar reflectivity
factor, the mean Doppler velocity, and the Doppler
spectrum width. These values can be used to re-
trieve the cloud and rain parameters. In our research
we used the Doppler cloud radar MIRA-36 [6]
operating at the frequency of 36 GHz. The radar
characteristics are listed in a Table.
Table. Characteristics of the radar MIRA-36
Frequency 36 GHz
Peak power 30 kW
Pulse width 100÷400 ns
Pulse repetition frequency 2.5, 5.0, or 7.5 kHz
Antenna beam width 0.6°
Range resolution 15÷60 m
Time resolution 0.1 s
Doppler analysis FFT
FFT length 128, 256, 512
Maximum unambiguous
velocity ± 15 m/s
Doppler spectrum resolution 5 cm/s
Polarization
Transmitter Single polarization
Receiver Dual polarization
Remote control and
observations
TCP/IP (the Internet)
O. Bezvesilniy, G. Peters, and D. Vavriv
298 Ðàäèîôèçèêà è ðàäèîàñòðîíîìèÿ, 2003, ò. 8, ¹3
The aim of this paper is to propose an algo-
rithm for real-time retrieval of the high-resolu-
tion images of the effective droplet diameter, the
droplet concentration, the liquid water content,
the vertical air flow velocity, and the rainfall rate.
These additional images will improve the radar
capacity for real-time observations of precipita-
tion events and will provide important informa-
tion on the cloud and rain structure.
The paper is organized as follows. The intro-
duction is followed by a brief review of the clas-
sical retrieval approach based on the Marshall-
Palmer expressions. Then a two-parameter retriev-
al algorithm is considered. After that, results of
the algorithm application are discussed. The pa-
per ends with a brief conclusion.
2. Marshall-Palmer Approach
Several retrieval algorithms have already been
proposed. The classical approach is based on the
Marshall-Palmer retrieval expressions [1-4]. Ac-
cording to this approach, an empirical relation is
assumed between the droplet effective diameter
and the droplet concentration,
0 0 8000N D = 3m / mm.− (5)
Moreover, the vertical air flow velocity is sup-
posed to be small as compared to the terminal
fall velocity, and an empirical relation for the
rainfall rate is introduced,
0.21
01 4.1D R−= ⋅ .
Thus, the Marshall-Palmer approach allows re-
trieving the cloud and rain parameters from a sin-
gle measured value, the radar reflectivity factor,
1.6200 ,Z R= ⋅ 0.880.072 .LWC R= ⋅
The scheme of the approach is given in Fig. 1.
Proceeding from the reflectivity factor, the rain-
fall rate is estimated, and then the effective diam-
eter, the droplet concentration and the liquid water
content are retrieved.
However, it has been found out that the empir-
ical relation between the effective diameter and
the droplet concentration varies considerably. A
number of similar empirical expressions with oth-
er numerical coefficients have been proposed. The
diversity of this relations, on the one hand, comes
from the variety of the precipitation conditions,
and, on the other hand, is a result of inhomogene-
ity of the clouds and rain with time and height.
Therefore, the Marshall-Palmer expressions are
applicable for estimating the averaged cloud and
rain parameters and not suitable for retrieving the
high-resolution images of the parameters.
3. Two-Parameter Retrieval Approach
We have not postulated the relation between
the droplet effective diameter and concentration.
Instead, we have used the retrieval algorithm
based on an independent estimation of these two
parameters. As will be shown below, the droplet
effective diameter can be estimated from the
Doppler spectrum width. The droplet concen-
tration can be then retrieved from the reflecti-
vity factor (3).
In case of incoherent Rayleigh scattering, the
radar backscattered signal (IQ-signal) is a zero-
mean stationary random process with a well-
known correlation function [1, 2, 5, 7],
[ ]( ) exp 2s aR P ikVτ = − τ ×
[ ]
( )exp 2 ( )
exp 2 .
( )
g
t
D ikV D
ikV
D
σ τ × − τ
σ
(6)
Fig. 1. Marshall-Palmer approach
Estimating Cloud and Rain Parameters from Doppler Radar Data
299Ðàäèîôèçèêà è ðàäèîàñòðîíîìèÿ, 2003, ò. 8, ¹3
Here sP is the signal power, and 6( )D Dσ : is the
Rayleigh backscattering cross section. Using (6),
one can obtain the formula for the Doppler spec-
trum moments,
( ) ( )
.
( )
n
a g t
n
D V V D V
V
D
σ − +
=
σ
In particular, the mean Doppler velocity mea-
sured by radar is a sum of the mean vertical air
flow velocity, Va, and the mean terminal fall ve-
locity of droplets, ,gV
,a gV V V= − (7)
0
( ) ( ) ( 6 0.67 1)
( ) .
( ) ( 6 1)
g
g g
D V D
V V D
D
σ Γ µ + + += =
σ Γ µ + +
The Doppler spectrum width, σ, is a sum of the
turbulent spread, σt, and the spread due to disper-
sion of the terminal fall velocity of droplets, ,gσ
2 2 2,g tσ = σ + σ
2
2 2
( ) ( )
( )
g
g g
D V D
V
D
σ
σ = − =
σ
2 2
0
( 6 2 0.67 1)
( ) ,
( 6 1)g gV D V
Γ µ + + ⋅ += −
Γ µ + +
For the case of 0,µ =
03.6 ( ),g gV V D= ⋅ (8)
00.92 ( ).g gV Dσ = ⋅ (9)
Thus, the main idea of the two-parameter ap-
proach consists in the following. The spectrum
spread due to dispersion of the terminal fall velo-
city of droplets depends on the droplet effective
diameter. Therefore, if the turbulent spread is small,
the effective diameter can be estimated based on
the Doppler spectrum width (9). The droplet con-
centration can be then retrieved from the reflectiv-
ity factor (3). Thus, within the framework of this
algorithm, the effective diameter and the droplet
concentration are estimated independently, in con-
trast to the Marshall-Palmer approach. Calculating
the mean terminal fall velocity of the droplets (8)
and using the measured value of the mean Dop-
pler velocity, the vertical air flow velocity can be
extracted (7). Finally, the liquid water content (2)
and the rainfall rate (4) can be retrieved.
The scheme of the retrieval algorithm is shown
in Fig. 2.
In case of the fine-droplet clouds, the turbu-
lent spread is comparable to the spread due to
dispersion of the terminal fall velocity of drop-
lets. The typical values of the spectrum width
observed in these clouds are less than about
0.2 m/s. This value corresponds to the effective
diameter of about 15 µm. This diameter has been
considered as the minimum effective diameter
that can be estimated within the framework of
the approach discussed. Thus, our two-parame-
ter approach is suitable for retrieving the pa-
rameters of precipitating water clouds and
weak or moderate rain.
4. Results and Discussion
The retrieval approach suggested has appeared
to be a convenient tool for the real-time estima-
tion of the cloud and rain parameters. This has
Fig. 2. Two-parameter approach
O. Bezvesilniy, G. Peters, and D. Vavriv
300 Ðàäèîôèçèêà è ðàäèîàñòðîíîìèÿ, 2003, ò. 8, ¹3
been demonstrated with the K-band cloud Dop-
pler radar MIRA-36. The images of the retrieved
droplet effective diameter and the droplet con-
centration for the case of weak rain and for the
region below the melting layer are shown in
Figs. 3 and 4.
To examine the dependences between differ-
ent cloud and rain parameters, the two-dimen-
sional histograms have been built in the two-
parameter planes. Let us consider the histogram
of the measured values of the mean Doppler ve-
locity and the Doppler spectrum width in the
plane �velocity � spectrum width� shown in
Fig. 5. The retrieval approach discussed is based
Fig. 3. Image of the retrieved droplet effective diameter
Fig. 4. Image of the retrieved droplet concentration
on the assumption that the Doppler spectrum
width is mainly determined by dispersion of the
terminal fall velocity of droplets. Under this as-
sumption, if there are no strong vertical air flows,
the measured mean Doppler velocity should be
on average linearly proportional to the Doppler
spectrum width, (8), (9). This theoretical depen-
dence is shown in Fig. 5 as a grey line. One can
see that the theoretical relation is on average
consistent with the observed distribution. Thus,
we can conclude that in case of precipitating
clouds and rain the spectrum width is principal-
ly determined by the dispersion of the terminal
fall velocity of droplets.
Estimating Cloud and Rain Parameters from Doppler Radar Data
301Ðàäèîôèçèêà è ðàäèîàñòðîíîìèÿ, 2003, ò. 8, ¹3
In Fig. 6, the histogram in the plane of the re-
trieved parameters �effective diameter � concentra-
tion� is shown. According to this figure, on average
the concentration decreases with the diameter. This
is in contrast to the Marshall-Palmer relation (5)
which is plotted in this figure as a light grey line and
shows the reverse dependence. However, this line
crosses the maximum of the distribution, implying
that the Marshall-Palmer retrieval expressions allow
to estimate the averaged values of the parameters.
The observed distribution can be interpreted
as follows. If the effective diameter and the con-
centration are varying while the liquid water con-
tent retains constant, then the concentration is a
reciprocal of the third power of the effective di-
ameter (2). This dependence is plotted as a dark
grey line and on average demonstrates better
agreement with the observed distribution.
The images of the liquid water content, the verti-
cal air flow velocity and the rainfall rate in the time-
height plane have also been produced. The averaged
values of the retrieved parameters are in agreement
with the Marshall-Palmer retrieval expressions.
5. Conclusion
The two-parameter retrieval algorithm suggest-
ed has appeared to be suitable for the real-time
observations with vertically-directed Doppler radars.
The algorithm provides high-resolution images of
the droplet effective diameter, the droplet concen-
tration, the liquid water content, the vertical air flow
velocity and the rainfall rate. These images provide
important information on the cloud and rain struc-
ture and thus improve the radar capacity for real-
time observation of precipitation events.
Acknowledgements
This work has been done in the Institute of
Radio Astronomy (Ukraine) in cooperation with
the Meteorological Institute of Hamburg Uni-
versity (Germany).
References
1. H. Sauvageot. Radar Meteorology. Artech House,
Boston, London, 1992.
2. R. J. Doviak and D. S. Zrnic. Doppler Radar and
Weather Observations. Academic Press, 1984.
3. L. J. Battan. Radar Observations of the Atmosphere. The
University of Chicago Press, Chicago, 1973.
4. D. Atlas. �Advances in Radar Meteorology�, in
Advances in Geophysics. New York: Academic,
pp.318-478, 1964.
5. A. G. Gorelik and A. G. Smirnov. Doklady Akad.
Nauk SSSR. May 1961, 139, pp. 1098-1100.
6. V. Bormotov, G. Peters, K. Schünemann, D. Vavriv,
V. Vinogradov, and V. Volkov. Proceedings of
Fig. 5. The histogram of the measured values of the
mean Doppler velocity and the Doppler spectrum width
Fig. 6. The histogram on the plane of the retrieved
effective diameter and the droplet concentration
O. Bezvesilniy, G. Peters, and D. Vavriv
302 Ðàäèîôèçèêà è ðàäèîàñòðîíîìèÿ, 2003, ò. 8, ¹3
Millennium Conference on Antenna and Propagation.
Davos, Switzerland, April 2000, pp. 319-320.
7. A. Ishimaru. Wave Propagation and Scattering in
Random Media. Vol. 1, 2. Academic, New York, 1978.
Îöåíêà ïàðàìåòðîâ îáëàêîâ è äîæäÿ
ïî äàííûì äîïëåðîâñêîãî
ðàäèîëîêàòîðà
À. À. Áåçâåñèëüíûé, Ã. Ïèòåðñ,
Ä. Ì. Âàâðèâ
Ïîñòðîåíèå èçîáðàæåíèé ïàðàìåòðîâ âî-
äÿíûõ îáëàêîâ, äàþùèõ îñàäêè, è äîæäÿ ñ
ïîìîùüþ âåðòèêàëüíî íàïðàâëåííîãî äîïëå-
ðîâñêîãî ðàäèîëîêàòîðà ÿâëÿåòñÿ âàæíîé çà-
äà÷åé.  ñòàòüå ïðåäëîæåí àëãîðèòì, îñíîâàí-
íûé íà íåçàâèñèìîé îöåíêå ýôôåêòèâíîãî
äèàìåòðà è êîíöåíòðàöèè êàïåëü. Ýòîò ïîä-
õîä îòëè÷àåòñÿ îò ïîäõîäà Ìàðøàëëà-Ïàëüìå-
ðà, îñíîâàííîãî íà îöåíêå îäíîãî ïàðàìåòðà �
ðàäèîëîêàöèîííîé îòðàæàåìîñòè.
Ïîêàçàíî, ÷òî ïîäõîä Ìàðøàëëà-Ïàëüìåðà
îáåñïå÷èâàåò õîðîøóþ îöåíêó óñðåäíåííûõ
ïàðàìåòðîâ, íî íå ãîäèòñÿ äëÿ ïîñòðîåíèÿ èçîá-
ðàæåíèé ïàðàìåòðîâ ñ âûñîêèì ðàçðåøåíèåì
â êîîðäèíàòàõ âðåìÿ � âûñîòà. Ðàññìàòðèâàå-
ìûé ïîäõîä ñ äâóìÿ ïàðàìåòðàìè áûë èñïûòàí
íà ïîëÿðèìåòðè÷åñêîì äîïëåðîâñêîì ðàäèîëî-
êàòîðå MIRA-36. Â ñòàòüå ïðèâåäåíû ðåçóëüòà-
òû èçìåðåíèé è èõ îáðàáîòêè. Ïðåäëîæåííûé
àëãîðèòì îêàçàëñÿ ïðèåìëåìûì äëÿ ðàáîòû â
ðåàëüíîì âðåìåíè íà âåðòèêàëüíî íàïðàâëåí-
íûõ äîïëåðîâñêèõ ðàäèîëîêàòîðàõ.
Îö³íêà ïàðàìåòð³â õìàð òà äîùó
çà äàíèìè äîïëåð³âñüêîãî
ðàä³îëîêàòîðà
Î. Î. Áåçâåñ³ëüíèé, Ã. ϳòåðñ,
Ä. Ì. Âàâð³â
Ïîáóäîâà çîáðàæåíü ïàðàìåòð³â âîäÿíèõ
õìàð, ùî äàþòü îïàäè, òà äîùó çà äîïîìî-
ãîþ âåðòèêàëüíî îð³ºíòîâàíîãî äîïëåð³âñü-
êîãî ðàä³îëîêàòîðà º âàæëèâîþ çàäà÷åþ.
 ñòàòò³ çàïðîïîíîâàíî àëãîðèòì, ùî áà-
çóºòüñÿ íà íåçàëåæí³é îö³íö³ åôåêòèâíîãî
ä³àìåòðà òà êîíöåíòðàö³¿ êðàïåëü. Öåé ï³äõ³ä
â³äð³çíÿºòüñÿ â³ä ï³äõîäó Ìàðøàëà-Ïàëüìå-
ðà, ùî áàçóºòüñÿ íà îö³íö³ îäíîãî ïàðàìåò-
ðà � êîåô³ö³ºíòà ðàä³îëîêàö³éíîãî â³äáèòòÿ.
Ïîêàçàíî, ùî ï³äõ³ä Ìàðøàëà-Ïàëüìå-
ðà çàáåçïå÷óº äîáðó îö³íêó óñåðåäíåíèõ ïà-
ðàìåòð³â, àëå íå ïðèäàòíèé äëÿ ïîáóäîâè
çîáðàæåíü ïàðàìåòð³â ç âèñîêèì ðîçä³ëåí-
íÿì â êîîðäèíàòàõ ÷àñ � âèñîòà. Ðîçãëÿíó-
òèé ï³äõ³ä ç äâîìà ïàðàìåòðàìè áóëî âèï-
ðîáóâàíî íà ïîëÿðèìåòðè÷íîìó äîïëåð³âñü-
êîìó ðàä³îëîêàòîð³ MIRA-36.  ñòàòò³ íà-
âåäåíî ðåçóëüòàòè âèì³ðþâàíü òà ¿õ îáðîá-
êè. Çàïðîïîíîâàíèé àëãîðèòì âèÿâèâñÿ
ïðèäàòíèì äëÿ ðîáîòè ó ðåàëüíîìó ÷àñ³ íà
âåðòèêàëüíî ñïðÿìîâàíèõ äîïëåð³âñüêèõ
ðàä³îëîêàòîðàõ.
|