Algorithms with stabilizing coefficients for solving poorly determined radiophysics problems
This article describes the algorithms with correcting and stabilizing coefficients to provide sustainable solutions to systems of equations related to poorly determined tasks of electrodynamics and nonlinear dynamics. It demonstrates the use of the modified algorithms in the task of E0i-waves propag...
Saved in:
Date: | 2016 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Published: |
Інститут радіофізики і електроніки ім. А.Я. Усикова НАН України
2016
|
Series: | Радіофізика та електроніка |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/122623 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Algorithms with stabilizing coefficients for solving poorly determined radiophysics problems / A.A. Kurayev, V.V. Matveyenko, T.L. Popkova // Радіофізика та електроніка. — 2016. — Т. 7(21), № 3. — С. 5-10. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-122623 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1226232017-07-17T03:02:41Z Algorithms with stabilizing coefficients for solving poorly determined radiophysics problems Kurayev, A.A. Matveyenko, V.V. Popkova, T.L. Микроволновая электродинамика This article describes the algorithms with correcting and stabilizing coefficients to provide sustainable solutions to systems of equations related to poorly determined tasks of electrodynamics and nonlinear dynamics. It demonstrates the use of the modified algorithms in the task of E0i-waves propagation in irregular waveguide and dynamic model of Rössler’s chaos. In the latter case the article demonstrates that “deterministic” (i. e. regenerating) chaos is impossible. В статье приведены алгоритмы с уточняющими и стабилизирующими коэффициентами, позволяющие получать устойчивые решения систем уравнений, относящихся к плохо обусловленным задачам электродинамики и нелинейной динамики. Продемонстрировано применение модифицированных алгоритмов в задаче распространения E0i-волн в нерегулярном волноводе и модели динамического хаоса Ресслера. В последнем случае показано, что «детерминированный» (т. е. воспроизводимый) хаос невозможен. У статті наведено алгоритми з уточнюючими і стабілізуючими коефіцієнтами, що дозволяють отримувати стійкі розв’язки систем рівнянь, що відносяться до погано зумовлених задач електродинаміки та нелінійної динаміки. Продемонстровано застосування модифікованих алгоритмів у задачі поширення E0i-хвиль у нерегулярному хвилеводі та моделі динамічного хаосу Ресслера. В останньому випадку показано, що «детермінований» (тобто відтворений) хаос неможливий. 2016 Article Algorithms with stabilizing coefficients for solving poorly determined radiophysics problems / A.A. Kurayev, V.V. Matveyenko, T.L. Popkova // Радіофізика та електроніка. — 2016. — Т. 7(21), № 3. — С. 5-10. — Бібліогр.: 6 назв. — англ. 1028-821X http://dspace.nbuv.gov.ua/handle/123456789/122623 621.385.6 en Радіофізика та електроніка Інститут радіофізики і електроніки ім. А.Я. Усикова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Микроволновая электродинамика Микроволновая электродинамика |
spellingShingle |
Микроволновая электродинамика Микроволновая электродинамика Kurayev, A.A. Matveyenko, V.V. Popkova, T.L. Algorithms with stabilizing coefficients for solving poorly determined radiophysics problems Радіофізика та електроніка |
description |
This article describes the algorithms with correcting and stabilizing coefficients to provide sustainable solutions to systems of equations related to poorly determined tasks of electrodynamics and nonlinear dynamics. It demonstrates the use of the modified algorithms in the task of E0i-waves propagation in irregular waveguide and dynamic model of Rössler’s chaos. In the latter case the article demonstrates that “deterministic” (i. e. regenerating) chaos is impossible. |
format |
Article |
author |
Kurayev, A.A. Matveyenko, V.V. Popkova, T.L. |
author_facet |
Kurayev, A.A. Matveyenko, V.V. Popkova, T.L. |
author_sort |
Kurayev, A.A. |
title |
Algorithms with stabilizing coefficients for solving poorly determined radiophysics problems |
title_short |
Algorithms with stabilizing coefficients for solving poorly determined radiophysics problems |
title_full |
Algorithms with stabilizing coefficients for solving poorly determined radiophysics problems |
title_fullStr |
Algorithms with stabilizing coefficients for solving poorly determined radiophysics problems |
title_full_unstemmed |
Algorithms with stabilizing coefficients for solving poorly determined radiophysics problems |
title_sort |
algorithms with stabilizing coefficients for solving poorly determined radiophysics problems |
publisher |
Інститут радіофізики і електроніки ім. А.Я. Усикова НАН України |
publishDate |
2016 |
topic_facet |
Микроволновая электродинамика |
url |
http://dspace.nbuv.gov.ua/handle/123456789/122623 |
citation_txt |
Algorithms with stabilizing coefficients for solving poorly determined radiophysics problems / A.A. Kurayev, V.V. Matveyenko, T.L. Popkova // Радіофізика та електроніка. — 2016. — Т. 7(21), № 3. — С. 5-10. — Бібліогр.: 6 назв. — англ. |
series |
Радіофізика та електроніка |
work_keys_str_mv |
AT kurayevaa algorithmswithstabilizingcoefficientsforsolvingpoorlydeterminedradiophysicsproblems AT matveyenkovv algorithmswithstabilizingcoefficientsforsolvingpoorlydeterminedradiophysicsproblems AT popkovatl algorithmswithstabilizingcoefficientsforsolvingpoorlydeterminedradiophysicsproblems |
first_indexed |
2025-07-08T22:04:02Z |
last_indexed |
2025-07-08T22:04:02Z |
_version_ |
1837118729308078080 |
fulltext |
ММИИККРРООВВООЛЛННООВВААЯЯ ЭЭЛЛЕЕККТТРРООДДИИННААММИИККАА
_______________________________________________________________________________________________________________
__________
ISSN 1028−821X Радиофизика и электроника. 2016. Т. 7(21). № 3 © ИРЭ НАН Украины, 2016
UDC 621.385.6
A. A. Kurayev, V. V. Matveyenko, T. L. Popkova
Belarusian State University of Informatics and Radioelectronics
6, P. Brovki St., Minsk 220013, Belarus
E-mail: vladzimir66@bsuir.by
ALGORITHMS WITH STABILIZING COEFFICIENTS FOR SOLVING POORLY DETERMINED
RADIOPHYSICS PROBLEMS
This article describes the algorithms with correcting and stabilizing coefficients to provide sustainable solutions to systems of
equations related to poorly determined tasks of electrodynamics and nonlinear dynamics. It demonstrates the use of the modified algorithms
in the task of E0i-waves propagation in irregular waveguide and dynamic model of Rössler’s chaos. In the latter case the article demonstrates
that “deterministic” (i. e. regenerating) chaos is impossible. Fig. 5. Ref.: 6 title.
Key words: poorly determined task, stable numerical method, supercritical waves in waveguide, dynamic chaos.
There is a wide class of poorly determined or
incorrectly formulated tasks in both electrodynamics and
nonlinear dynamics. For example, in electrodynamics
there are tasks of calculating the supercritical or partial
(irregular structures) waveguide supercritical waves, in
nonlinear dynamics there are dynamic (“deterministic”)
chaos modes in oscillatory systems. In the first case,
an arbitrarily small calculation errors or initial
conditions lead to an exponential error, i. e. to the
divergence of the solution [1, 2]. In the second case,
an arbitrarily small calculation errors lead to their
accumulation and to attractor malfunction so appears
“strange attractor” [3]. It should be noted that
“strange attractor” in real structures described by
these models appears actually. But here its
“actuation” is produced by natural noises in physical
systems, rather than “numerical noise” of numerical
model, where chaos has indeed “deterministic”
nature.
The article suggests several modifications
for “numerical noise” elimination to ensure the
sustainability of solutions in relation to calculation
errors.
1. E0i-wave propagation in irregular
waveguide with circular cross-section. The theory
of wave propagation in irregular waveguides based
on the method of coordinate transformation and
projection method leads in the end to double point
boundary-value problem for system of ordinary
differential equations (ODE) in relation to the
amplitudes of coupled normal waves in a transformed
coordinate system [1]. ODE for irregular waveguide
with circular cross-section is divided into H0i- and
E0i-waves (zero-azimuth index waves), i. e. H0i- and
E0i-waves systems become independent [1]. Thus,
excitation problems are solved independently for
H0i- and E0i-modes.
The proposed article uses (for formulation of
excitation equation E0i-waves) suitable approach
(from the point of view of the above considerations
[4, 5]): E′
is excluded in the transformed system and
the equation of the second order is solved for H ′
.
After such an approach the boundary value E0i-waves
problem becomes a scalar (H ′
has only one
component рH'ϕ), and the resulting ODE system
relative to normal waves amplitude is transformed to
even form. The demonstrated examples of numerical
solution of E0i-waves tasks allow illustrating the
stability of numerical algorithms for solving ODE
system received for E0i-waves.
It is important to emphasize the relevance of
equation formulation for E0i-waves excitation in
irregular waveguides with a circular cross-section in
adequate form for stable numerical methods, as these
types of waves are used in superpowerful
Cherenkov's amplifiers and generators ensuring the
creation of radar systems and anti-ballistic missile
systems of new generation.
Here we consider the longitudinally-irregular
waveguide with circular cross-section, internal border
set as b(z), b is the waveguide radius, z is the
longitudinal coordinate. Boundary condition on a
perfectly conductive inner surface b(z) is specified as
[ ] .0)( == zbrEn
(1)
After a coordinate transformation (moving
from real coordinate system r, ϕ, z to ρ, ϕ, z, where
ρ = r/b(z)), get the boundary condition (1)
[ ] ,01 =′ =ρEn
(2)
then Maxwell's equations are the following form
(vacuum medium) [1, 5]:
.ˆ,ˆˆ 00 t
HgErotJg
t
EgHrot
∂
′∂
−=′′+
∂
′∂
=′
µε (3)
Here ε0, µ0 are the dielectric and magnetic
permeability of vacuum accordingly, and auxiliary
vector components JHE ′′′
,, this way are
associated with covariant vectors JHE
,, (physical
А. А. Кураев и др. / Алгоритмы со стабилизирующими коэффициентами…
_______________________________________________________________________________________________________________
6
vectors of electric and magnetic fields and electric
current density) [1, 4, 5]:
.
,
,
321
321
321
aJaJaJJ
aHaHaHH
aEaEaEE
z
z
z
′+′+′=
′+′+′=
′+′+′=
ρ
ρ
ρ
ϕρ
ϕρ
ϕρ
Where 321 ,, aaa
are reciprocal
unorthogonal coordinate system vectors ρ, ϕ, z:
.,, 0
30201 za
b
a
dz
db
b
z
b
ra
==−=
ρ
ϕρ
Covariant tensor ĝ is [1, 5]:
.,,1
0
010
0
ˆ
2
333113
2
2
11
3331
1311
bg
dz
dbbgg
dz
dbg
gg
gg
g
=−==
+=
=
ρρ
(4)
Contravariant tensor 1ˆ −g is
.1,
,
0
000
01
ˆ
2
2
2
2333113
3331
13
1
===
=−
dz
db
bb
G
dz
db
b
GG
GG
G
g
ρρ
(5)
Now eliminate from the system (3) E′
then
get the equation for H ′
:
( ) ( ) .0ˆˆ
2
2
00
1 =′−′
∂
∂
−′− JrotHg
t
Hrotgrot
µε (6)
Believing that the process is periodic and established
(stationary modes of relativistic TWT and BWT) can
present the solution H
′ in the form of
.Re
0
∑
=
′=′
M
m
tjm
m eHH ω
(7)
Now return to the item of E0j-wave
excitation in the waveguide. Then taking into account
boundary condition (2) mH ′
can be represented as the
next finite series [1, 4, 5]:
,...2,1,0)(
,)()(
00
010
1
==
=′ ∑
=
iJ
JzAH
i
i
I
i
M
mim
ν
ρνϕ
(8)
For getting the ODE system finding E0j
associated normal wave amplitudes will take
advantage of projection Galerkin’s method.
Substitute solution (7), (8) in the source system (6)
and replace its equivalent projection system of
equations:
=×
×′
∂
∂
−′
0
2
0
1
0
−∫ ∫
)(
ˆˆ
2
1
10
2
2
00
1
tddJ
Hg
t
Hrotgrot
p ωρρρνϕ
µε
π
π
);(
2
1
10
2
0
1
0
tddJJrot p ωρρρνϕ
π
π
0∫ ∫ ′=
=×
×′+′
0
−∫
ρρρνϕ
µεω
dJ
HgmHrotgrot
p
mm
10
1
0
00
221 ˆˆ
(9)
∫ ∫ −
0′=
π
ω ωρρρνϕ
π
2
0
1
0
10 );(
2
1 tdedJJrot tjm
p
=×
′+′
0
×
−∫
ρρρνϕ
µεω
dJ
HgmHrotgrot
p
mm
10
1
0
00
221 ˆˆ
....,2,1,...,2,1),(
)(
2
1
1
2
0
1
0
MmIpzI
tdtjmedJ
z
JJ
mp
p
z
==−=
=−
∂
′
−
∂
′
×
×−=
0∫ ∫ ωωρρρν
ρ
π
π
ρ
After insert equations (8) taking into account (4),
(5) into (9) for mH ′
is ODE system to M
miA :
.)(
113
21
3212
22
2
1
2
2
02
2
2
zI
I
dz
db
b
I
dz
bd
bdz
db
b
A
dz
AI
dz
db
bh
A
b
m
dz
Ad
mp
ippi
M
mi
M
mi
pi
I
ipp
M
mp
p
M
mp
=
=−++
+−+
+−+
∑
ν
(10)
Boundary condition for ODE system (10) matched on
regular waveguide ends has the standard form [1].
The system (10), however, does not satisfy
our task, because it contains the first derivative of
M
miA function that leads to instability of the
computational algorithm. Therefore, we introduce the
replacement: .)()( zCzbA M
mp
M
mp
= Then ODE system
has required even representation (the main part).
Physical magnetic field intensity at тω frequency is
expressed as ,0 ϕϕ mm HH
= where
.
)(
)(
1
01
tim
l
p
p
M
mpm e
zb
rJzCH ω
ϕ ∑
=
ν= (11)
А. А. Кураев и др. / Алгоритмы со стабилизирующими коэффициентами…
_______________________________________________________________________________________________________________
7
And physical electric field intensity ,mE
( )
∂
∂
−
∂
∂
= 00
0
1 r
z
H
z
rr
Hr
im
E mm
m
ϕϕ
εω
,
here complex amplitude M
mpC is used by the equation:
−
+
+−+ 2
22
22
2
02
2
2 21
dz
bd
bdz
db
bb
m
dz
Cd p
M
mp ν
+
− M
mp
pp
pp C
h
I
dz
db
b
3
2
1
∑
≠=
+
+−+
l
kpk
M
mkM
mk
pp
kp
dz
CdbC
dz
db
h
I
dz
db
b,1
1
2
2
(12)
.01
13
3
2
1
2
22
2
=
−
−
+
+
pp
kp
pp
kpM
mk
h
I
dz
db
b
h
I
dz
bd
bdz
db
b
C
Here are the following designations: b(z) – profile
waveguide; ν0p – p - root of the Bessel function J0(x):
J0(ν0p) = 0; hpp = J1
2(ν0p)/2; ρ = r/b(z).
,)()(
1
0
2
001001 ∫= ρρνρνρν dJJI kpkkp
.)()()(
1
0
2
001013 ∫= ρρνρνρν dJJI kpkkp
Equations (11) and (12) are given in length
units for z, b(z). It is obvious that if the left and the
right of these equations are multiplied by 1/k2 = c2/ω2,
that quantity z, b(z) are converted into dimensionless,
that obviously comfortable for making calculations.
From this point on let us take designation of these
values without modification that is for (11) and (12)
equations b(z) ≡ kb(z), z ≡ kz.
The even form of excitation equations
E0i-wave (12) opens the way to use even algorithms
for step-by-step solution of these equations proposed
in [5] and tested on solution of H0i-waves tasks [5].
Let us use step by step algorithm described in [5] of
even equation solution for H0i-waves
fCzQ
dz
Cd
=+ )(2
2
(13)
in the following form:
,
2
2
12
1
21
2
1
2 ττττ
+
+
++
+ +−−= k
k
kkk
k
fhQhCCCC
(14)
where τ > 1 the number selected when specific
calculations, at that τ → 1 when reducing integration
step. Introduction to algorithm (14) parameter τ > 1
is caused necessity to ensure the uniqueness of
solution of boundary-value problem for the
equation (12): the decision must have the only field
component excited by sources at the left end.
Actually when using standard algorithms through
very minute calculation errors appears backward field
component which is not consistent with the physical
meaning, which for supercritical modes increases
exponentially in +z direction, leading to a rapid
solution collapse. Introduction of the parameter τ in
algorithm excludes appearance of incorrect
component and thus ensures the sustainability of step-
by-step procedures for the calculation. Note that the
introduction of the parameter τ is necessary to meet
the conditions of the uniqueness of a solution
theorem: the environment must have a place at least
small losses.
The calculated waveguide profile b(z) in
Fig. 1, а, and in Fig. 1, b – distribution M
pC1
when
the number of steps for even algorithm N = 20 000.
Acceptable accuracy is achieved when N = 2 000.
a)
b)
Fig. 1. E-wave field calculation using an even algorithm: waveguide
profile and ν0p: -.- ν01, --- ν02 (a); )(1 zC M
p
when N = 20 000:
--- p = 1; -.- p = 2; –– p = 3; – – p = 4 (b)
Fig. 2 illustrates the convergence even
algorithm when increasing N: here are the
dependences of maximum along z for relative error
M
pC1
δ and the dependences 1/τp from N(p = 1, 2, ...).
6
4
2
0
b
2
1.5
1
0.5
0
M
pC1
2C
1C
0 5 10 15 20 25 z
0 5 10 15 20 25 z
ν0p
А. А. Кураев и др. / Алгоритмы со стабилизирующими коэффициентами…
_______________________________________________________________________________________________________________
8
a)
b)
Fig. 2. The convergence even algorithm when increasing N:
δр = δр(N) (a); 1/τp(N); –– p = 1; --- p = 2; – – – p = 3; –.– p = 4 (b)
Fig. 3 illustrates the effect of higher postcritical
E0j-waves on the structure of the fields in the waveguide.
а)
b)
c)
Fig. 3. Effect of higher postcritical E02- , E03-, E04-waves on structure
of fields in waveguide: waveguide profile b(z) (а); MC01
(b); mode
composition of full field in waveguide: –– p =1; - - - p = 2; – – p = 3;
– ⋅ – p = 4 (c)
2. The elimination of exponential
calculation errors. Let us use recurrent calculation
formula of exponential function Ate (A – a complex
number) [2]:
.
)2(
)2(
n
n
nA
A
Ae
∆−
∆+
≈∆ (15)
Here t = ∆ n; ∆ – step, n – node number.
Let function f(t) is calculated by using a
simple one-step algorithm:
).()()),1(()(
,
11
1
nftffnftff
fff
nnnn
nnn
∆=≡+∆=≡
′∆+=
++
+ (16)
A simple numerical way to “separate from”
the exponent with power (α t) can be illustrated by
calculation example with formula (15) (eα
t – “separate
from” exponent):
[ ]α∆−
∆−
∆+
= − 1
)2(
)2(
1nn f
A
Af
(17)
multiplicand [ ]αβ ∆−= 1 and provides a “separate
from” exponent.
One of the most famous mathematical
nonlinear dynamics models demonstrating the
“deterministic chaos” is the Rössler’s equation
system [6]:
( )
+−=
+=
+−=
.
,
,
xzmzw
dt
dz
eyx
dt
dy
zy
dt
dx
(18)
Here e, w, m – constant numbers, model parameters;
t – argument of the functions x, y, z.
Let us introduce the function
.)()( 11
22
1 kkkkkk zzzzzzpif +−−−= +++
This function determines a numerical residual
of “energy” solution z(t) and therefore is “numerical
noise” indicator.
Solving the equation system (18) by the
usual step-by-step methods in phase plane x, y one
gets the “strange attractor” and demonstrates
“deterministic” i. e. regenerating chaos. Fig. 4 shows
a similar solution with using IV order Runge–Kutta
method at e = w = 0.2; m = 6.5; ∆ = 0.00042,
nmax = 100 000. The same solution is obtained by
using any other standard method – Adams, Hamming,
Bimon, Werle, and others.
Note that pif-“surges” correlate with the
occurrence of “peaks” when finding z(t), that is an
indicator of “attractor” malfunction in the plane x, y.
10
5
0
1
0.5
0
6
4
2
1/τp
δp
M
pC0
MC01
pb 0,ν
1
0.5
0 5 10 15 20 25 30 35 z
0.4
0.2
0
500 1000 1500 2000 N
500 1000 1500 2000 N
0 5 10 15 20 25 30 35 z
0 5 10 15 20 25 30 35 z
А. А. Кураев и др. / Алгоритмы со стабилизирующими коэффициентами…
_______________________________________________________________________________________________________________
9
Fig. 4. “Strange attractor”, “deterministic chaos” with the
following model parameters e = w = 0.2; m = 6.5; ∆ = 0.00042,
nmax = 100 000, α = 0.0979, pif = ))(( 11
22
1 kkkkkk zzzzzz +−−− +++
Now construct the calculation algorithm (18)
with correcting factor [ ]αβ ∆−= 1 :
( )[ ]
( )[ ]
[ ]
+∆+∆−∆=
+∆+=
+∆+−=
+
+
+
.
,
,
1
1
1
β
β
β
nnnnn
nnnn
nnnn
zzxzmwz
yyexy
xzyx
(19)
Basing on algorithm (19) let us find solution
of equation system (18) given the same as in the
previous case of options: e = w = 0.2; m = 6.5;
∆ = 0.00042, nmax = 100 000, α = 0.0979, “strange
attractor” and “chaos” are not present, the solution
leads to steady-state limit cycle.
Solution repetition when ∆ = 0.008,
nmax = 10 000, α = 0.1017 leads to exactly the same
result, that is shown in Fig. 5.
Fig. 5. The exact solution of equation (8) with the following model
parameters e = w = 0.2; m = 6.5; ∆ = 0.008, nmax = 10 000,
α = 0.1017, pif = ))(( 11
22
1 kkkkkk zzzzzz +−−− +++
As can be seen from Fig. 5, pif = 0 if t > 0.5,
i. e. “numerical noise” is eliminated while forming
limit cycle. The system solution (18) gives a
stationary attractor in the plane x, y. Thus, emergence
of “strange attractor” and “deterministic chaos” is the
consequence of the exponential calculation error
accumulation of poorly determined model equation
system. The introduction correcting coefficient β
eliminates the numerical error and chaos does not
z
pif
x
y 10
8
6
4
2
0
–2
–4
–6
–8
–10
–12
–11 –8 –6 –2 4 7 10 13
t
x
8 16 24 32 40 48 56 64 72 80
10
7.5
5
2.5
0
–2.5
–5
–7.5
–10
y
x
1.2
0.9
0.6
0.3
0
–0.3
–0.6
–0.9
–1.2
–1.5
–1.2 –0.9 –0.6 –0.3 0.3 0.6 0.9 1.2
t
z
8 16 24 32 40 48 56 64 72 80
27
24
21
18
15
12
9
6
3
0
x
t
2 4 6 8 10 12 14 16 18
1.2
0.9
0.6
0.3
0
–0.3
–0.6
–0.9
–1.2
t
2 4 6 8 10 12 14 16 18 20
9
8
7
6
5
4
3
2
1
0
t
8 16 24 32 40 48 56 64 72 80
pif
1·10–13
8·10–14
6·10–14
4·10–14
2·10–14
0
–2·10–14
–4·10–14
–6·10–14
–8·10–14
–1·10–14 t
2 4 6 8 10 12 14 16 18 20
1.2·10–14
9·10–15
6·10–15
3·10–15
0
–3·10–15
–6·10–15
–9·10–15
–1.2·10–14
А. А. Кураев и др. / Алгоритмы со стабилизирующими коэффициентами…
_______________________________________________________________________________________________________________
10
occur as it should be for a deterministic mathematical
model. In real physical system described by
model (18) chaos might occur because the system is
unstable due to natural noise. But it will not be
deterministic, i. e. regenerating chaos, since natural
noise cannot be regenerating.
Conclusion. Mathematical physics equations
related to poorly determined tasks electrodynamics
and nonlinear dynamics can be solved by the listed
algorithms with correcting or stabilizing coefficients
β и τ in the article.
References
1. Kurayev A. A. Electrodynamics and radiowaves propagation /
A. A. Kurayev, T. L. Popkova, A. K. Sinitsyn. – M.: Infra-m,
2016. – 424 p.
2. Samarskii A. A. Difference schemes with operator multipliers /
A. A. Samarskii, P. N. Vabishchevich, P. P. Matus // Institute
of mathematical modeling of RAS; Institute of mathematics of
the NASB. – 1998. – Ser. 442. – P. 64–67.
3. Короновский А. А. Методы нелинейной динамики и тео-
рии хаоса в задачах электроники сверхвысоких частот: в
2 т. Т. 2. Нестационарные и хаотические процессы /
А. А. Короновский, Д. И. Трубецков, А. Е. Храмов. – M.:
Физматлит, 2009. – 392 с.
4. Kurayev A. A. High-power microwave devices. Analysis
methods and parameter optimization / A. A. Kurayev. – М.:
Radio and communication, 1986. – 208 p.
5. Кураев A. A. Дискретизация и рациональное исчисление в
задачах электродинамики / A. A. Кураев, T. Л. Попкова //
Изв. НАН Республики Беларусь. Сер. физ.-техн. наук. –
2001. – № 4. – С. 70–76.
6. Rössler O. E. An equation for continuous chaos /
O. E. Rössler // Phys. Lett. – 1976. – 57A, N 5. – P. 397–398.
Рукопись поступила 29.06.2016.
A. A. Кураев, В. В. Матвеенко, T. Л. Попкова
АЛГОРИТМЫ СО СТАБИЛИЗИРУЮЩИМИ
КОЭФФИЦИЕНТАМИ ДЛЯ РЕШЕНИЯ
ПЛОХО ОБУСЛОВЛЕННЫХ ЗАДАЧ
РАДИОФИЗИКИ
В статье приведены алгоритмы с уточняющими и
стабилизирующими коэффициентами, позволяющие получать
устойчивые решения систем уравнений, относящихся к плохо
обусловленным задачам электродинамики и нелинейной ди-
намики. Продемонстрировано применение модифицирован-
ных алгоритмов в задаче распространения E0i-волн в нерегу-
лярном волноводе и модели динамического хаоса Ресслера.
В последнем случае показано, что «детерминированный» (т. е.
воспроизводимый) хаос невозможен.
Ключевые слова: плохо обусловленная задача, устой-
чивые численные методы, закритические волны в волноводе,
динамический хаос.
О. О. Кураєв, В. В. Матвєєнко, T. Л. Попкова
АЛГОРИТМИ ЗІ СТАБІЛІЗУЮЧИМИ
КОЕФІЦІЄНТАМИ ДЛЯ РОЗВ’ЯЗАННЯ
ПОГАНО ЗУМОВЛЕНИХ ЗАДАЧ
РАДІОФІЗИКИ
У статті наведено алгоритми з уточнюючими і ста-
білізуючими коефіцієнтами, що дозволяють отримувати стійкі
розв’язки систем рівнянь, що відносяться до погано зумовле-
них задач електродинаміки та нелінійної динаміки. Продемон-
стровано застосування модифікованих алгоритмів у задачі
поширення E0i-хвиль у нерегулярному хвилеводі та моделі
динамічного хаосу Ресслера. В останньому випадку показано,
що «детермінований» (тобто відтворений) хаос неможливий.
Ключові слова: погано обумовлена задача, стійкі
числові методи, закритичні хвилі у хвилеводі, динамічний хаос.
|