Метод згладженої автокореляційної функції для прогнозування варіації гетероскедастичних часових рядів
Запропоновано новий метод для побудови прогнозу варіації сильноволатильних гетероскедастичних часових рядів. За модель часового ряду взято авторегресію нескінченного порядку. Параметри моделі знайдено як розв’язок системи рівнянь Тьопліца, у якій використовуються модельні коефіцієнти автокореляції,...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
2015
|
Назва видання: | Системні дослідження та інформаційні технології |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/123492 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Метод згладженої автокореляційної функції для прогнозування варіації гетероскедастичних часових рядів / Н.Г. Зражевська // Системні дослідження та інформаційні технології. — 2015. — № 3. — С. 97-108. — Бібліогр.: 12 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Запропоновано новий метод для побудови прогнозу варіації сильноволатильних гетероскедастичних часових рядів. За модель часового ряду взято авторегресію нескінченного порядку. Параметри моделі знайдено як розв’язок системи рівнянь Тьопліца, у якій використовуються модельні коефіцієнти автокореляції, за запропонованим методом. Модель автокореляційної функції на кожному кроці прогнозування побудовано шляхом розв’язання оптимізаційної задачі, що враховує умову сильної залежності. Метод протестовано на штучно згенерованому та реальному часових рядах. Для порівняння результатів прогнозування обрано модель авторегресії, параметри якої знайдено за методом максимальної правдоподібності. Результати свідчать про достатньо високу ефективність запропонованого методу під час прогнозування сильноволатильних гетероскедастичних часових рядів. |
---|