Вложение инвариантных многообразий в семейство интегральных многообразий и анализ решения Гесса

Рассмотрена задача овключении инвариантногомногообразия динамической системы всемействоинтегральных многообразий. Показано, чтотакоевключение всегда возможно, если толькоинвариантноемногообразие не является особым (состоящим из особых точек системы) коразмерности единица. Это дает возможность изучат...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2002
1. Verfasser: Ковалев, А.М.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2002
Schriftenreihe:Механика твердого тела
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/123685
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Вложение инвариантных многообразий в семейство интегральных многообразий и анализ решения Гесса / А.М. Ковалев // Механика твердого тела: Межвед. сб. науч. тр. — 2002. — Вип. 32. — С. 16-31. — Бібліогр.: 13 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Рассмотрена задача овключении инвариантногомногообразия динамической системы всемействоинтегральных многообразий. Показано, чтотакоевключение всегда возможно, если толькоинвариантноемногообразие не является особым (состоящим из особых точек системы) коразмерности единица. Это дает возможность изучать иинвариантные многообразия, используя уравнение для интегралов, а не уравнения Леви-Чивита, содержащие неопределенные множители. Установлена определяющая роль особых многообразий в формировании фазового портрета динамической системы и получены следующие из этого свойства интегралов. Результаты применены к анализу решений уравнений Эйлера-Пуассона. Дана характеристика четвертых интегралов вслучаях Эйлера, Лагранжа иКовалевской. Доказано, чтопри условиях Гессасуществует четвертый интеграл, частным случаем которогоявляются интегралы Эйлера иЛагранжа, атакжерешения Гесса и Докшевича.